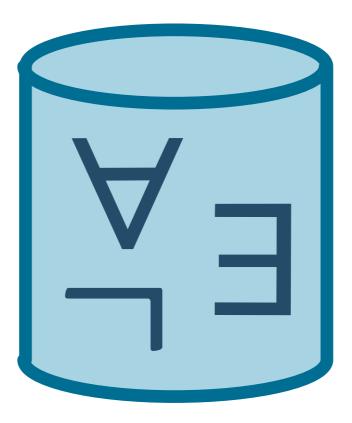
ECI 2015 Buenos Aires



Fundamentos lógicos de bases de datos (Logical foundations of databases)

Diego Figueira

Gabriele Puppis

CNRS LaBRI

Recap

- Relational model (tables)
- Relational Algebra (union, product, difference, selection, projection)
- SQL (SELECT ... FROM ... WHERE ...)
- First-order logic (syntax, semantics, active domain)
- Expressiveness (FO^{act} = RA = basic SQL)
- Undecidable problems (Halting ≤ Domino ≤ Satisfiability ≤ Equivalence)
- Data complexity / Combined complexity
- Complexity of evaluation (LOGSPACE / PSPACE complexity)

Goal: check which properties / queries are expressible in FO

Goal: check which properties / queries are expressible in FO

Example. $Q(G) = \{ (u, v) \mid G \text{ contains a path from } u \text{ to } v \}$

Is Q expressible as a first-order formula?

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

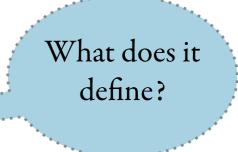
Quantifier rank \neq quantity of quantifiers Eg, in $d_0(x, y) = E(x, y)$, and $d_k(x,y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$ $qr(d_k) = k$ but # quantifiers of d_k is 2^k

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example.
$$\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $d_0(x, y) = E(x, y)$, and $d_k(x,y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$ $qr(d_k) = k$ but # quantifiers of d_k is 2^k



Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example. $\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $d_0(x, y) = E(x, y)$, and $d_k(x,y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$ $qr(d_k) = k$ but # quantifiers of d_k is 2^k What does it define?

Quantifier rank is a measure of complexity of a formula

Definition. Quantifier rank of $\phi = \max$ number of nested quantifiers in ϕ .

Example. $\phi = \forall x \forall y \left(\neg E(x,y) \lor \exists z \left(\left(E(x,z) \lor E(z,x) \right) \land \left(E(y,z) \lor E(z,y) \right) \right) \right)$

has quantifier rank 3.

Quantifier rank \neq quantity of quantifiers Eg, in $d_0(x, y) = E(x, y)$, and $d_k(x,y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$ $qr(d_k) = k$ but # quantifiers of d_k is 2^k What does it define?

Quantifier rank is a measure of complexity of a formula

Sub-goal: Given a property P and a number *n*, tell whether P is expressible by a sentence of quantifier rank at most *n*.

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$) [Tarski '30]

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$) [Tarski '30]

Consider a property (i.e. a set of structures) *P*.

Suppose that there are $S_1 \in P$, $S_2 \notin P$ *s.t.*

 S_1 and S_2 are *n*-equivalent.

Then P is *not expressible* by any sentence of quantifier rank n.

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$)

Consider a property (i.e. a set of structures) *P*.

Suppose that there are $S_1 \in P$, $S_2 \notin P$ *s.t.*

 S_1 and S_2 are *n*-equivalent. Then **P** is not expressible by any sentence of quantifier rank n. Note: if the above happens $\forall n$, then **P** is not expressible by *any* FO sentence.

[Tarski '30]

Definition. Two structures S_1 and S_2 are *n*-equivalent iff they satisfy the same FO sentences of quantifier rank $\leq n$ (i.e. $S_1 \models \phi$ iff $S_2 \models \phi$ for all $\phi \in FO$ with $qr(\phi) \leq n$)

Consider a property (i.e. a set of structures) P. Suppose that there are $S_1 \in P$, $S_2 \notin P$ *s.t.*

 S_1 and S_2 are *n*-equivalent. Then **P** is not expressible by any sentence of quantifier rank n. Note: if the above happens $\forall n$, then **P** is not expressible by *any* FO sentence.

[Tarski '30]

Example. $P = \{ \text{ finite structures} \}$ seems to be not FO-definable. One could then aim at proving that for all *n* there are $S_1 \in P$ and $S_2 \notin P$ s.t. S_1, S_2 *n*-equivalent...

Expressive power via games

Characterization of the expressive power of FO in terms of Games

Characterization of the expressive power of FO in terms of Games

<u>Idea</u>: For every two structures (S,S') there is a game where

a player of the game has a <mark>winning strategy</mark> iff S,S' are <mark>indistinguishable</mark>

A game between two players



Board: (S_1, S_2)

One player plays in one structure, the other player answers in the other structure. If after n rounds Duplicator doesn't lose: S_1 , S_2 are n-equivalent

Definition. Partial isomorphism between S_1 and S_2 = injective partial map $f: \text{ nodes of } S_1 \rightarrow \text{ nodes of } S_2$ so that E(x,y) iff E(f(x), f(y))

Definition. Partial isomorphism between S_1 and S_2 = injective partial map $f: \text{ nodes of } S_1 \rightarrow \text{ nodes of } S_2$ E(x,y) iff E(f(x), f(y))so that

Spoiler

and

Duplicator play for n rounds on the board S_1, S_2

Definition.	Partial isomorphism	n between S_1 and S_2 = injective partial map
		f : nodes of $S_1 \rightarrow$ nodes of S_2
	so that	E(x,y) iff $E(f(x), f(y))$

Spoiler and *Duplicator* play for n rounds on the board S_1, S_2

At each round i:

1. Spoiler chooses a node x_i from S_1 and Duplicator answers with a node y_i from $S_{2,}$

Definition.	Partial isomorphism	n between S_1 and S_2 = injective partial map
		f : nodes of $S_1 \rightarrow$ nodes of S_2
	so that	E(x,y) iff $E(f(x), f(y))$

Spoiler and *Duplicator* play for n rounds on the board S_1, S_2

At each round i:

1. Spoiler chooses a node x_i from S_1 and Duplicator answers with a node y_i from $S_{2,}$

or

2. Spoiler chooses a node y_i from S_2 and Duplicator answers with a node x_i from S_1 ,

Definition.	Partial isomorphism	n between S_1 and S_2 = injective partial map
		f : nodes of $S_1 \rightarrow$ nodes of S_2
	so that	E(x,y) iff $E(f(x), f(y))$

Spoiler and *Duplicator* play for n rounds on the board S_1, S_2

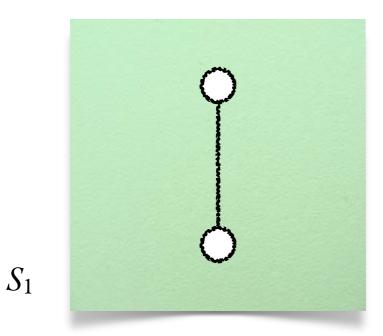
At each round i:

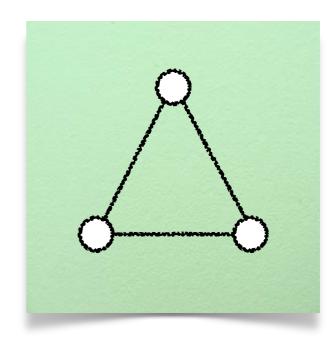
1. Spoiler chooses a node x_i from S_1 and Duplicator answers with a node y_i from $S_{2,}$

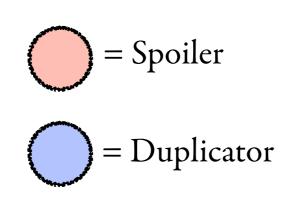
or

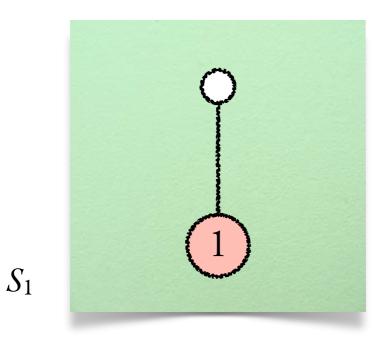
2. Spoiler chooses a node y_i from S_2 and Duplicator answers with a node x_i from S_1 ,

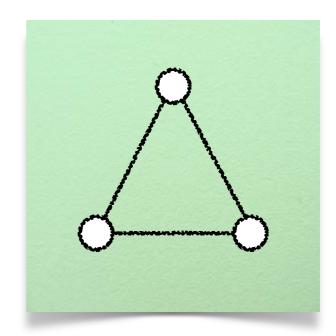
or **Spoiler** wins if $\{x_i \mapsto y_i \mid 1 \le i \le n\}$ is **not a partial isomorphism** between S_1 and S_2 .

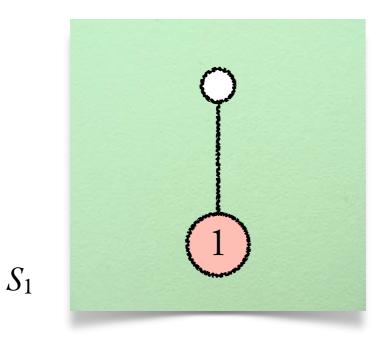


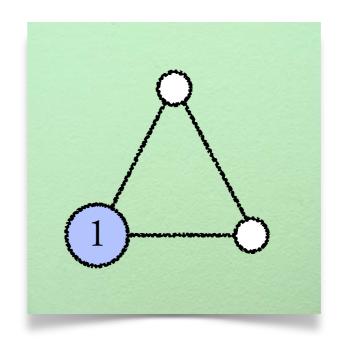


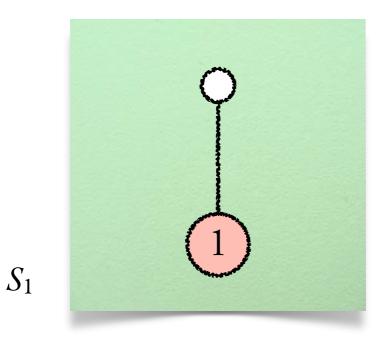


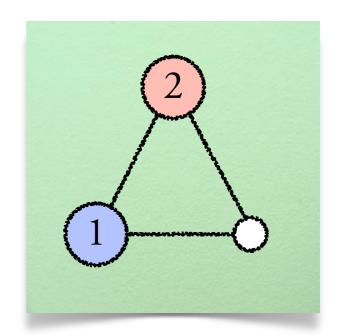


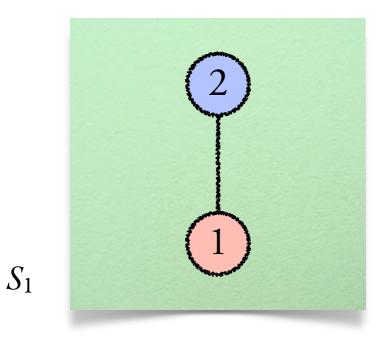


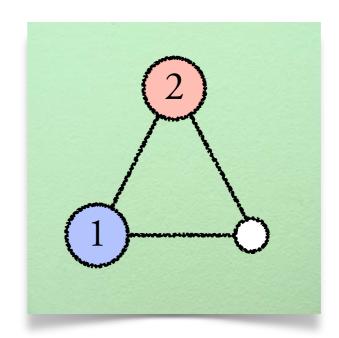


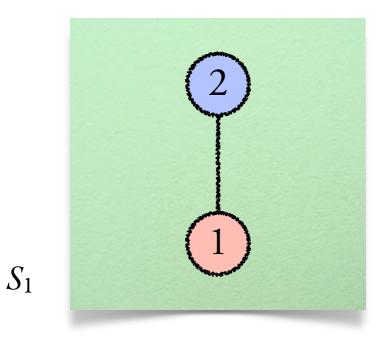


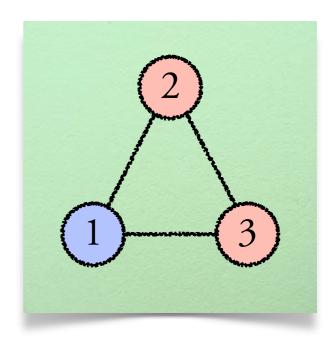




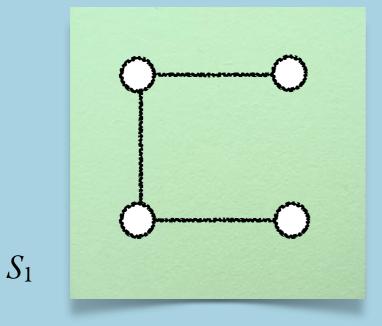


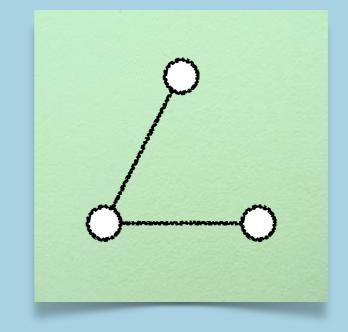




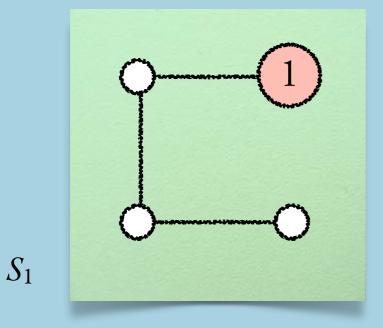


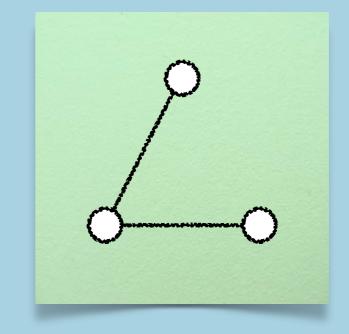
Question: Can Spoiler win in 3 rounds ?



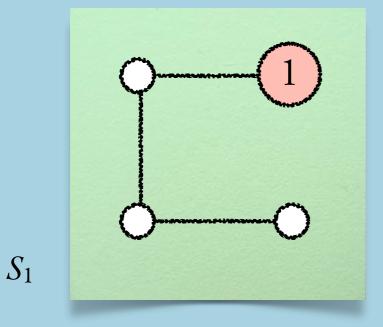


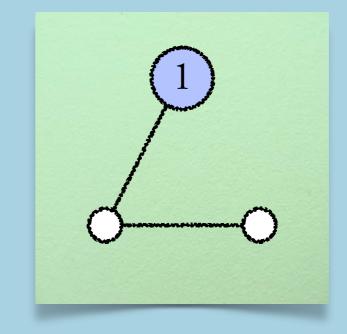
Question: Can Spoiler win in 3 rounds ?



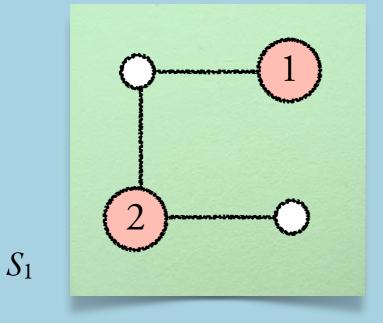


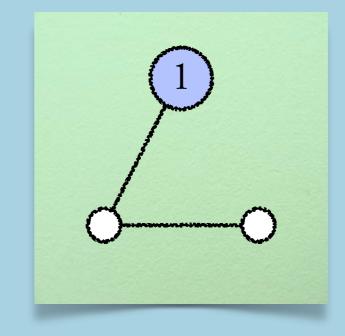
Question: Can Spoiler win in 3 rounds ?



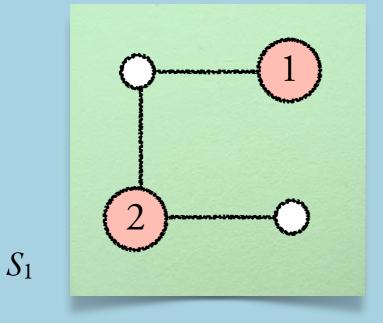


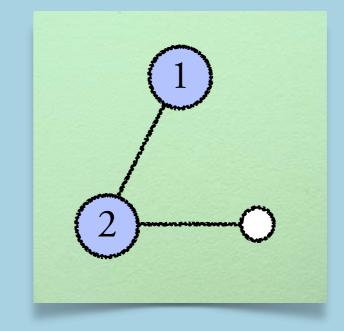
Question: Can Spoiler win in 3 rounds ?



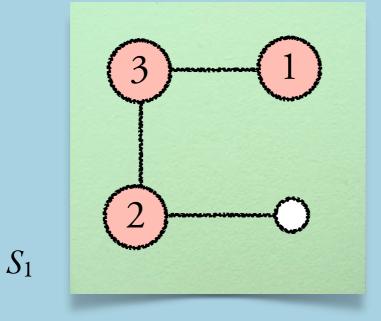


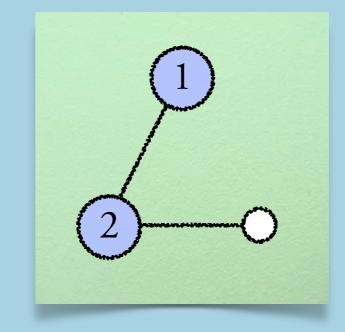
Question: Can Spoiler win in 3 rounds ?





Question: Can Spoiler win in 3 rounds ?





On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:

·O-····O 2^n - 1 nodes

·O-···-O-···-O 2^n nodes

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

0-----0(1) O----O 2^n - 1 nodes

0----0-0-0-0----0----0 2^n nodes

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

0----0 2^n - 1 nodes

O----O O----O(1) 0----0 2^n nodes

On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:

O----C 2^n - 1 nodes

O-···(2)···-O O-···-O(1) ···-O 2^n nodes

On non-isomorphic *finite* structures, Spoilers wins eventually... Why? ...and he often wins very quickly:

-...(2)...-O O----- 2^n - 1 nodes

O - - - O - - - O (1) C(2) 2^n nodes

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

-O(1)O-(2)-O O-(-O-(1)O)2 $2^n - 1$ nodes 2^n nodes

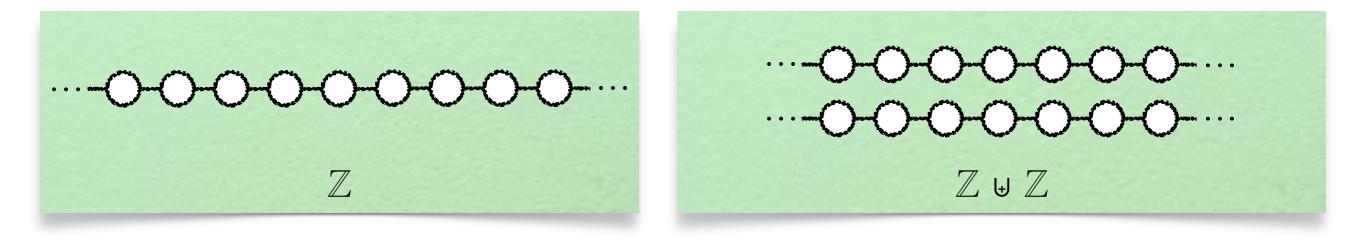
But there are non-isomorphic *infinite* structures where Duplicator can survive for *arbitrarily many rounds* (not necessarily forever!)

Any idea?

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

2 2^n nodes 2^n - 1 nodes



On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

 2^n nodes 2^n - 1 nodes

Given *n*, \mathbb{Z} $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in S_1 and S_2 must be either at equal distance or at distance $\geq 2^{n-i}$

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

-···(2)···-O O-···-O(1 2^n nodes 2^n - 1 nodes

Given *n*, \mathbb{Z} $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in S_1 and S_2 must be either at equal distance or at distance $\geq 2^{n-i}$

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

···-O O-···-O(1 ····<mark>(2)</mark> 2^n nodes 2^n - 1 nodes

Given *n*, \mathbb{Z} $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in S_1 and S_2 must be either at equal distance or at distance $\geq 2^{n-i}$

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

(2)····O O-····-O(1 2^n nodes 2^n - 1 nodes

Given *n*, \mathbb{Z} $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in S_1 and S_2 must be either at equal distance or at distance $\geq 2^{n-i}$

On non-isomorphic *finite* structures, Spoilers wins eventually... Why?

...and he often wins very quickly:

···-O O-···-O(1 (2) 2^n nodes 2^n - 1 nodes

Given *n*, \mathbb{Z} $\mathbb{Z} \uplus \mathbb{Z}$ at each round i = 1, ..., n, pairs of marked nodes in S_1 and S_2 must be either at equal distance or at distance $\geq 2^{n-i}$

Theorem.

 S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff

Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Theorem.

 S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

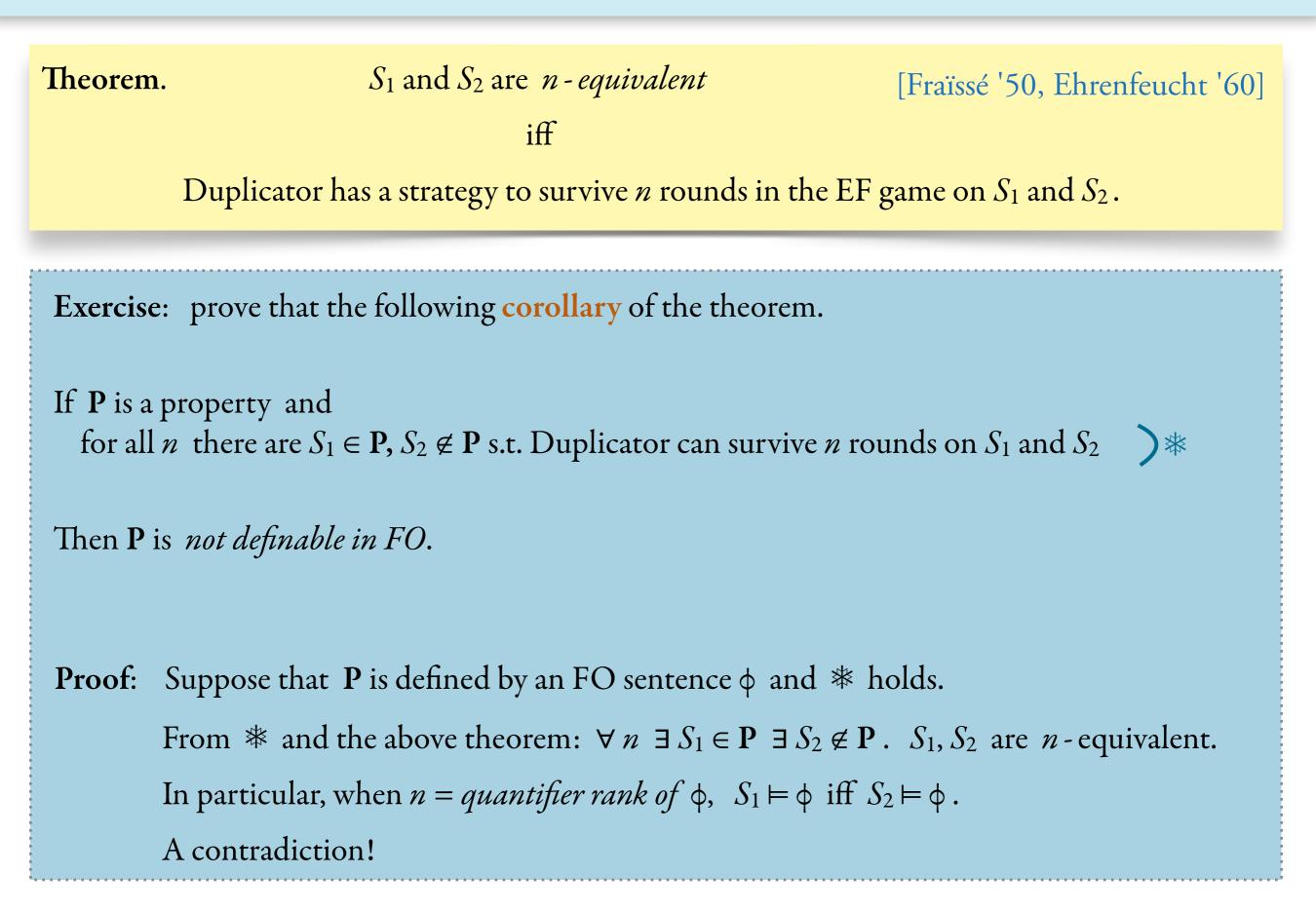
iff

Duplicator has a strategy to survive n rounds in the EF game on S_1 and S_2 .

Exercise: prove that the following **corollary** of the theorem.

If **P** is a property and for all *n* there are $S_1 \in \mathbf{P}$, $S_2 \notin \mathbf{P}$ s.t. Duplicator can survive *n* rounds on S_1 and S_2

Then **P** is *not definable in FO*.



Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.

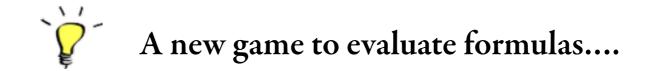
Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.



Assume w.l.o.g. that ϕ is in **negation normal form**.

Assume w.l.o.g. that ϕ is in **negation normal form**.

push negations inside: $\neg \forall \phi \rightsquigarrow \exists \neg \phi$ $\neg \exists \phi \rightsquigarrow \forall \neg \phi$ $\neg (\phi \land \psi) \rightsquigarrow \neg \phi \lor \neg \psi$...

Assume w.l.o.g. that ϕ is in **negation normal form**.

push negations inside: $\neg \forall \phi \rightsquigarrow \exists \neg \phi$ $\neg \exists \phi \rightsquigarrow \forall \neg \phi$ $\neg (\phi \land \psi) \rightsquigarrow \neg \phi \lor \neg \psi$...

Whether $S \vDash \phi$ can be decided by a *new game* between two players, **True** and **False**:

- $\phi = E(x,y)$ \rightarrow True wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow$ True moves by marking a node x in S, the game continues with ϕ'
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2 \rightarrow$ True moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2 \rightarrow$ False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

Assume w.l.o.g. that ϕ is in **negation normal form**.

push negations inside: $\neg \forall \varphi \rightsquigarrow \exists \neg \varphi$ $\neg \exists \varphi \rightsquigarrow \forall \neg \varphi$ $\neg (\varphi \land \psi) \rightsquigarrow \neg \varphi \lor \neg \psi$...

Whether $S \vDash \phi$ can be decided by a *new game* between two players, **True** and **False**:

- $\phi = E(x,y)$ \rightarrow **True** wins if nodes marked x and y are connected by an edge, otherwise he loses
- $\phi = \exists x \phi'(x) \rightarrow$ True moves by marking a node x in S, the game continues with ϕ'
- $\phi = \forall y \phi'(y) \rightarrow$ False moves by marking a node y in S, the game continues with ϕ'
- $\phi = \phi_1 \lor \phi_2 \rightarrow$ True moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose
- $\phi = \phi_1 \wedge \phi_2 \rightarrow$ False moves by choosing ϕ_1 or ϕ_2 , the game continues with what he chose

Lemma. $S \models \phi$ iff **True** wins the semantics game.

Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

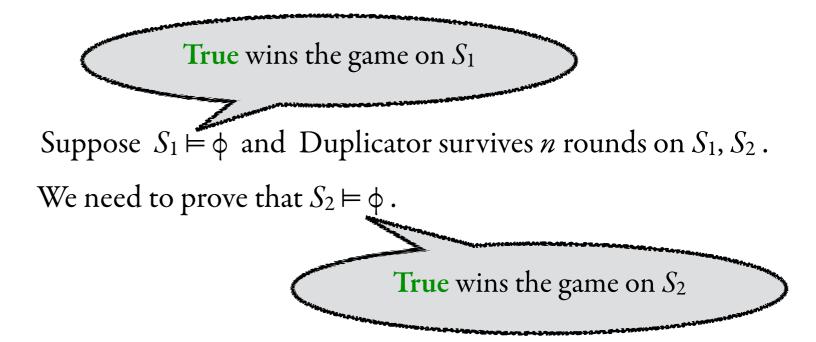
Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

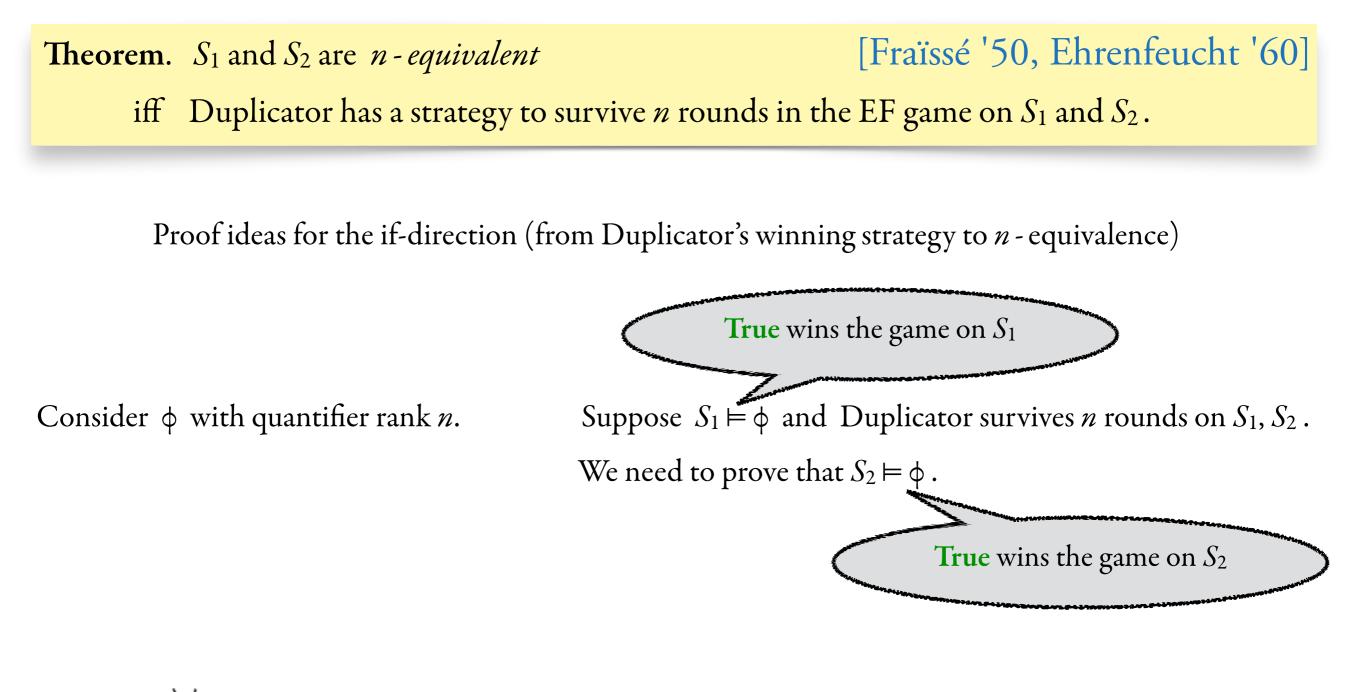
Consider ϕ with quantifier rank *n*.

Theorem. S_1 and S_2 are *n*-equivalent[Fraïssé '50, Ehrenfeucht '60]iffDuplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.





Turn winning strategy for True in S_1 into winning strategy for True in S_2

Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.

Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.

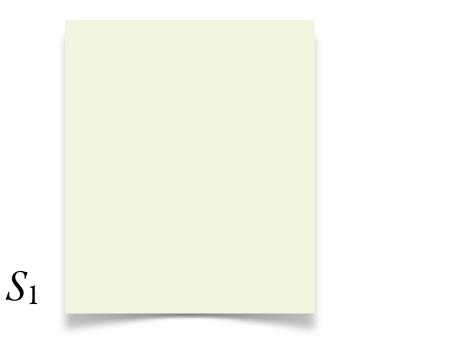
Theorem. S_1 and S_2 are *n*-equivalent

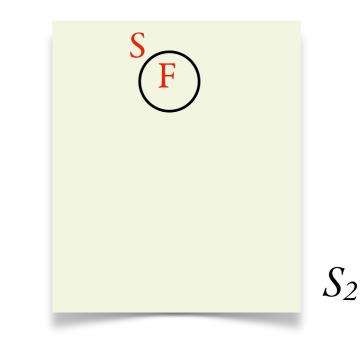
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.



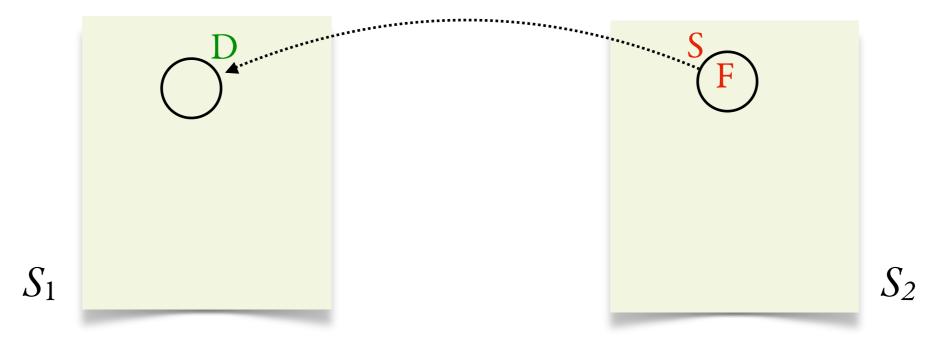


Theorem. S_1 and S_2 are *n*-equivalent[Fraïssé '50, Ehrenfeucht '60]If D_1 if D_2 if

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.



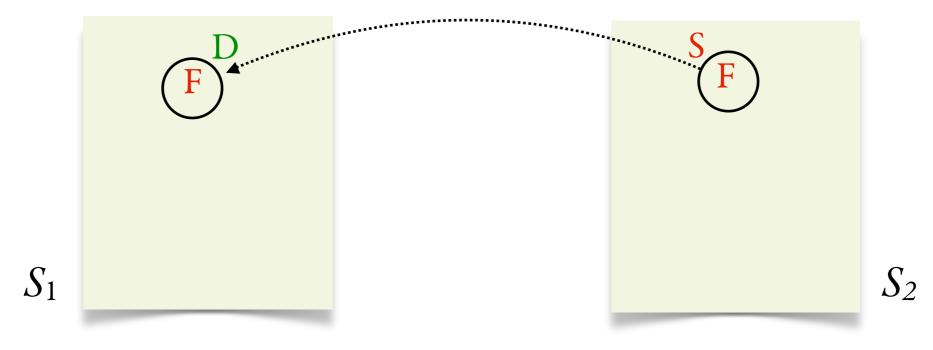
Theorem. S_1 and S_2 are *n*-equivalent []

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

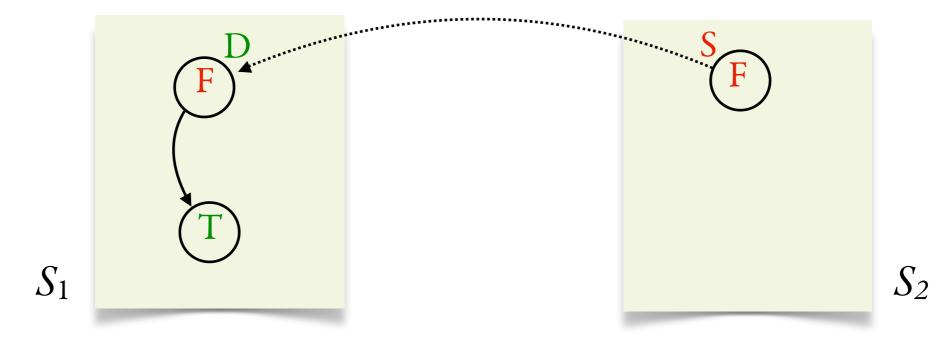
Consider ϕ with quantifier rank *n*.



Theorem. S_1 and S_2 are *n*-equivalent[Fraïssé '50, Ehrenfeucht '60]iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

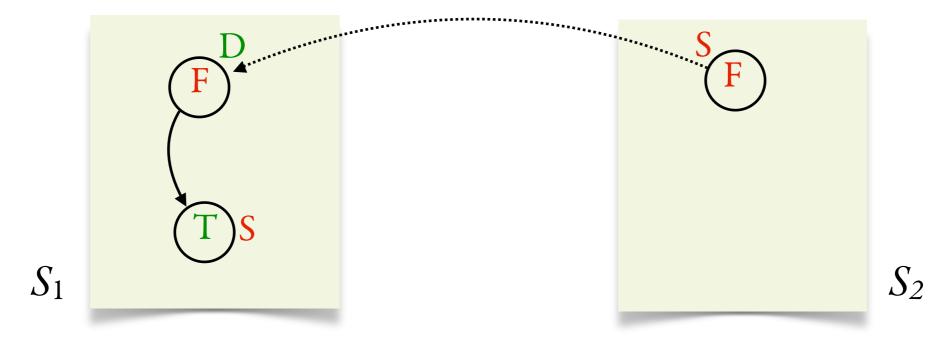
Consider ϕ with quantifier rank *n*.



Theorem. S_1 and S_2 are *n*-equivalent[Fraïssé '50, Ehrenfeucht '60]iffDuplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

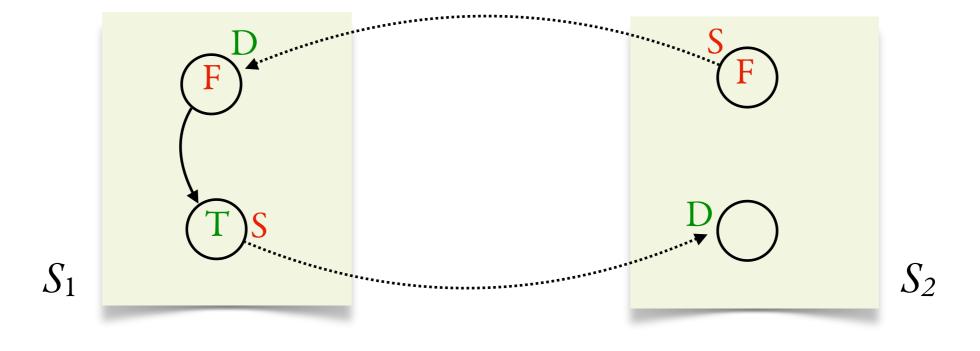
Consider ϕ with quantifier rank *n*.



Theorem. S_1 and S_2 are *n*-equivalent[Fraïssé '50, Ehrenfeucht '60]iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

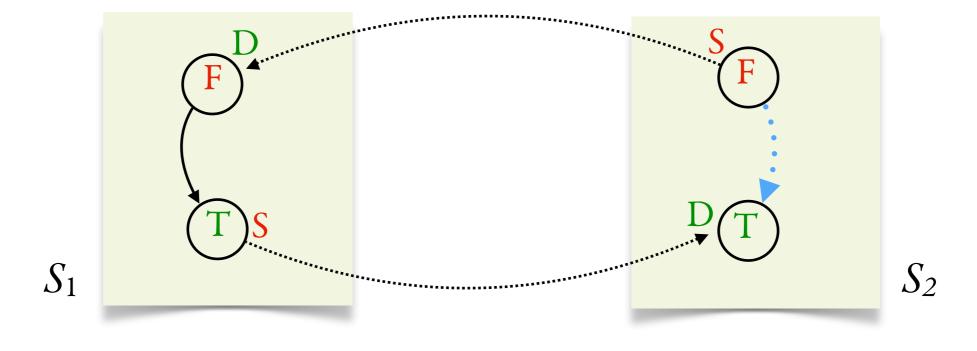
Consider ϕ with quantifier rank *n*.



Theorem. S_1 and S_2 are *n*-equivalent[Fraïssé '50, Ehrenfeucht '60]iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Proof ideas for the if-direction (from Duplicator's winning strategy to *n* - equivalence)

Consider ϕ with quantifier rank *n*.



Theorem. S_1 and S_2 are *n*-equivalent

[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO*

iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

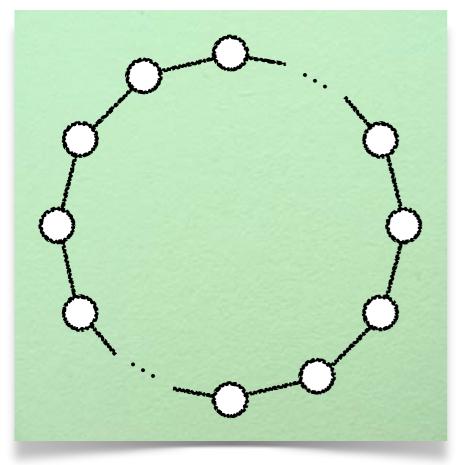
Theorem. S_1 and S_2 are *n*-equivalent

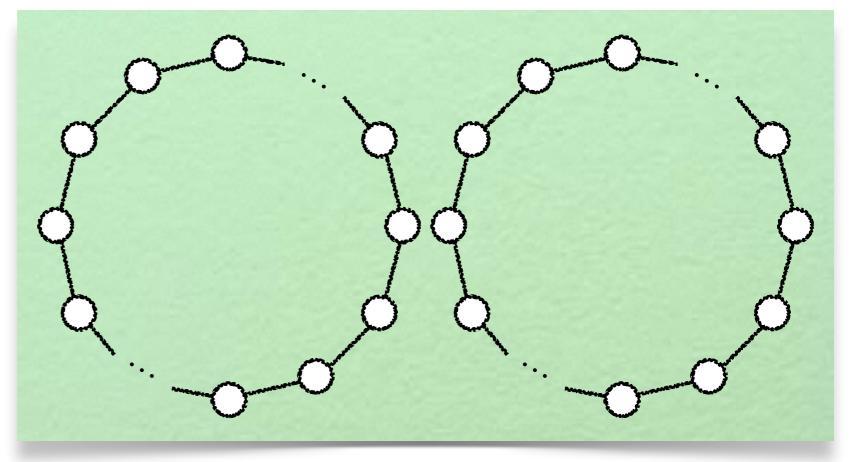
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO* iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

Example: $P = \{ \text{ connected graphs} \}$. Given *n*, take $S_1 \in P$ and $S_2 = S_1 \uplus S_1 \notin P$





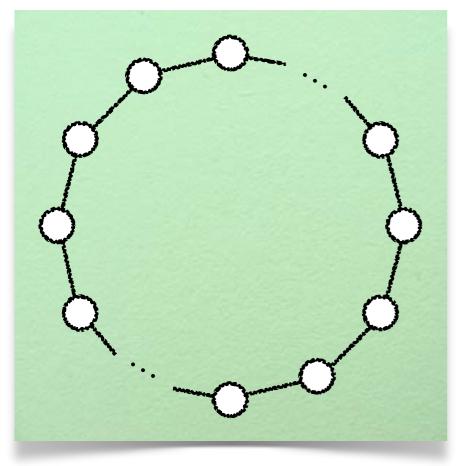
Theorem. S_1 and S_2 are *n*-equivalent

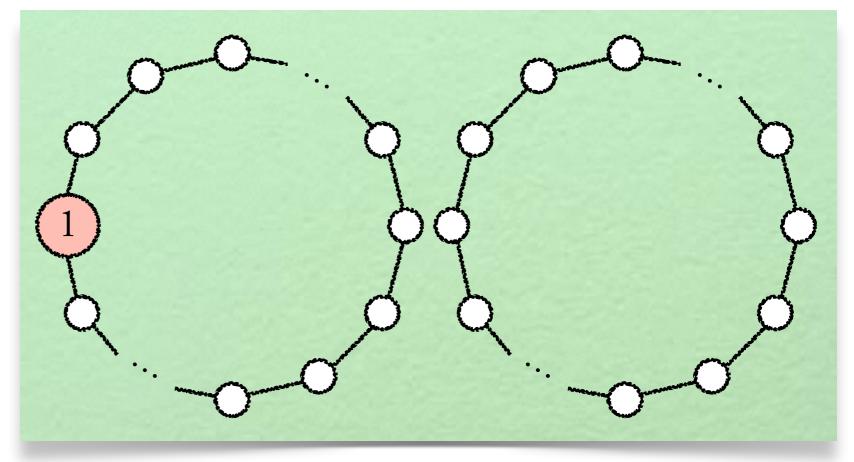
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO* iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

Example: $P = \{ \text{ connected graphs} \}$. Given *n*, take $S_1 \in P$ and $S_2 = S_1 \uplus S_1 \notin P$





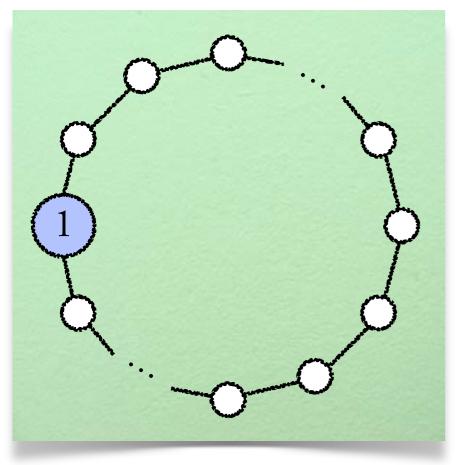
Theorem. S_1 and S_2 are *n*-equivalent

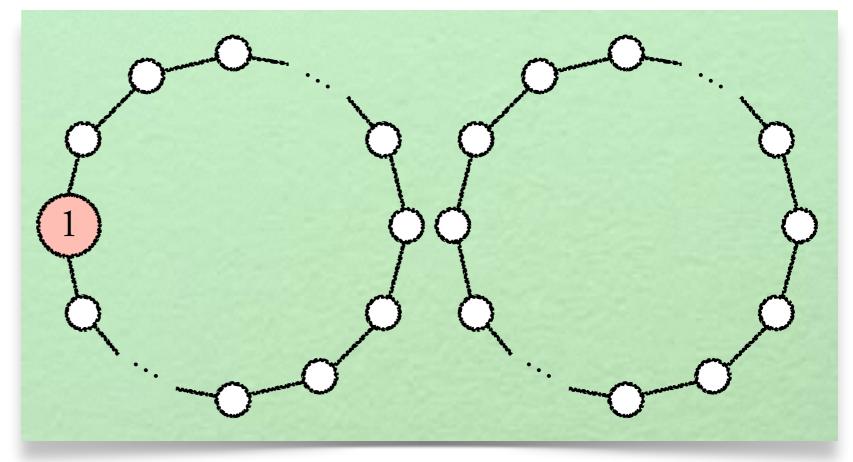
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO* iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

Example: $P = \{ \text{ connected graphs } \}$. Given *n*, take $S_1 \in P$ and $S_2 = S_1 \uplus S_1 \notin P$





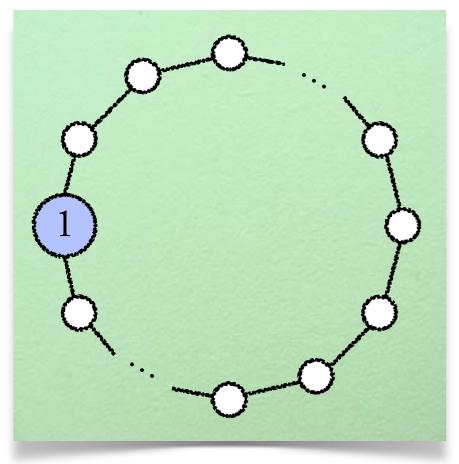
Theorem. S_1 and S_2 are *n*-equivalent

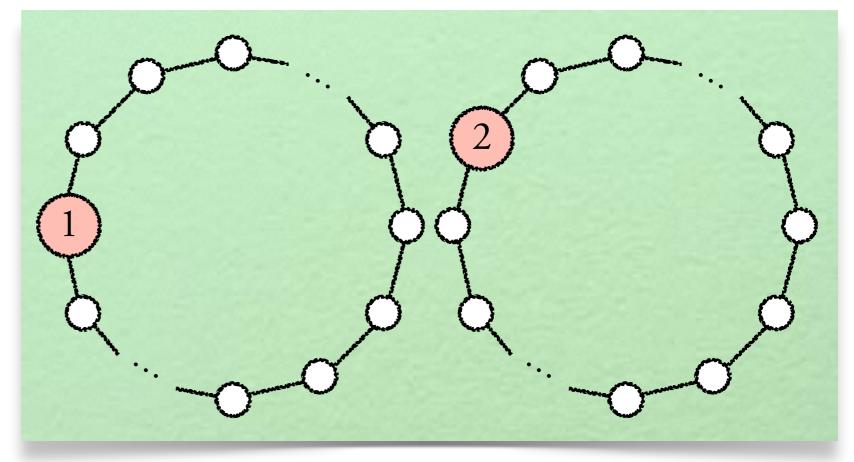
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO* iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

Example: $P = \{ \text{ connected graphs} \}$. Given *n*, take $S_1 \in P$ and $S_2 = S_1 \uplus S_1 \notin P$





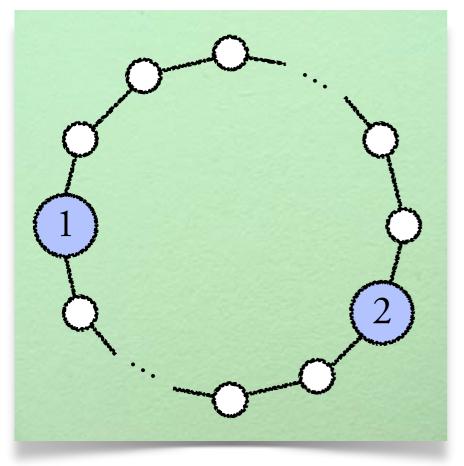
Theorem. S_1 and S_2 are *n*-equivalent

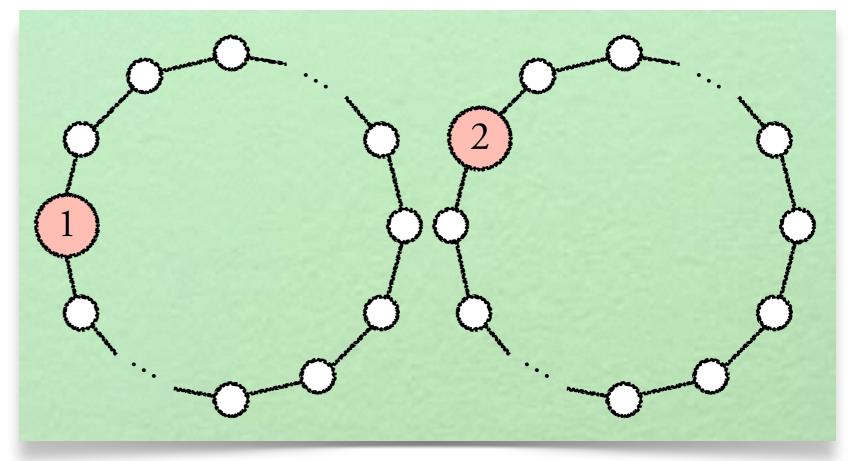
[Fraïssé '50, Ehrenfeucht '60]

iff Duplicator has a strategy to survive *n* rounds in the EF game on S_1 and S_2 .

Corollary. A property *P* is *not definable in FO* iff $\forall n \exists S_1 \in P \exists S_2 \notin P$ Duplicator can survive *n* rounds on S_1 and S_2 .

Example: $P = \{ \text{ connected graphs} \}$. Given *n*, take $S_1 \in P$ and $S_2 = S_1 \uplus S_1 \notin P$





Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)

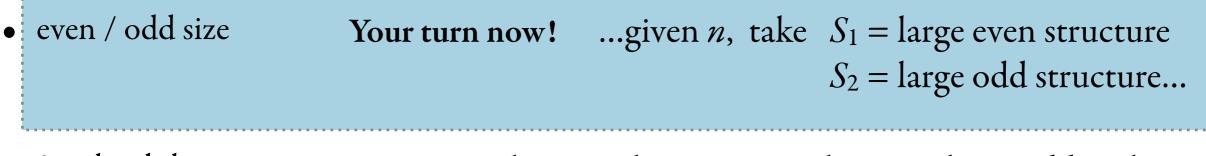
Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)

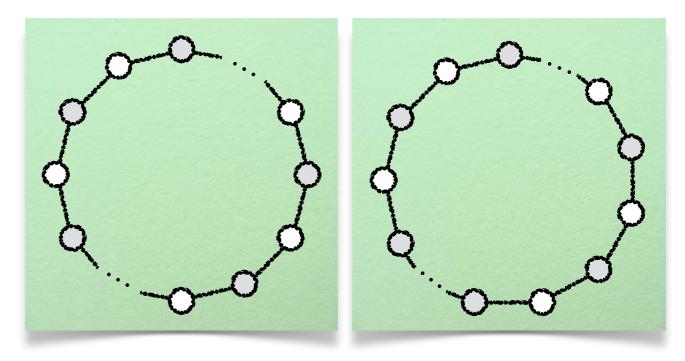
• even / odd size Your turn now! ...given *n*, take $S_1 =$ large even structure $S_2 =$ large odd structure...

Several properties can be proved to be *not FO-definable*:

• connectivity (previous slide)



• 2-colorability Given *n*, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$



Several properties can be proved to be *not FO-definable*:

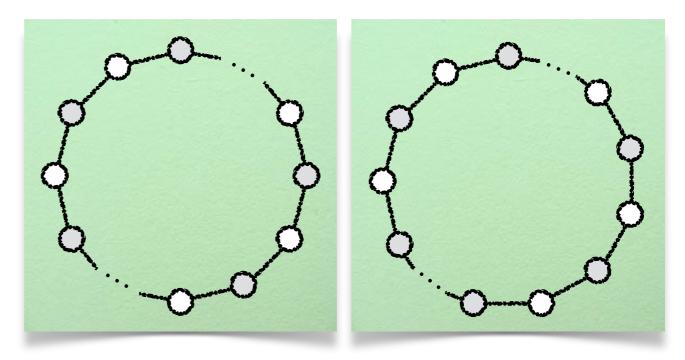
• connectivity (previous slide)

• even / odd size Your turn now! ...given *n*, take $S_1 =$ large even structure $S_2 =$ large odd structure...

• 2-colorability Given *n*, take $S_1 = \text{large even cycle}$ $S_2 = \text{large odd cycle}$

• finiteness

• acyclicity



• Libkin, "Elements of Finite Model Theory", Springer, 2004.

• Otto, "Finite Model Theory", Springer, 2005

(freely available at <u>www.mathematik.tu-darmstadt.de/~otto/LEHRE/FMT0809.ps</u>)

• Väänänen, "A Short course on Finite Model Theory", 1994.

(available at <u>www.math.helsinki.fi/logic/people/jouko.vaananen/shortcourse.pdf</u>)