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Abstract In this paper, we develop a theory of regular ω-languages that
consist of ultimately periodic words only and we provide it with an automaton-
based characterization. The resulting class of automata, called Ultimately
Periodic Automata (UPA), is a subclass of the class of Büchi automata and
inherits some properties of automata over finite words (NFA). Taking advan-
tage of the similarities among UPA, Büchi automata, and NFA, we devise
efficient solutions to a number of basic problems for UPA, such as the in-
clusion, the equivalence, and the size optimization problems. The original
motivation for developing a theory of ultimately periodic languages and au-
tomata was to represent and to reason about sets of time granularities in
knowledge-based and database systems. In the last part of the paper, we
show that UPA actually allow one to represent (possibly infinite) sets of
granularities, instead of single ones, in a compact and suitable to algorith-
mic manipulation way. In particular, we describe an application of UPA to a
concrete time granularity scenario taken from clinical medicine.
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1 Introduction

The relevance of the problem of managing periodic phenomena is widely
recognized in different areas of computer science. Various formalizations of
periodicity have been proposed in the literature, following algebraic, logi-
cal, string-based, and automaton-based approaches. We focus our attention
on the problem of representing and reasoning about sets of ultimately peri-
odic words. We first introduce the notion of ultimately periodic regular ω-
language, namely, a Büchi-recognizable language that consists of ultimately
periodic words only, and then we develop a theory of automata for this class
of languages.

In analogy with the case of Büchi-recognizable languages, regular ω-
languages of ultimately periodic words can be expressed as finite unions
of languages of the form U {v}

ω, where U is a regular language of finite
words and v is a non-empty finite word. Each language in such a class may
feature infinitely many distinct prefixes, but only a finite number of non-
equivalent repeating patterns. Taking advantage of such a characterization,
we show that these languages can be finitely represented by means of a suit-
able class of automata, called Ultimately Periodic Automata (UPA). UPA
can be equivalently viewed as a proper subclass of Büchi automata or as a
class of generalized non-deterministic finite state automata (NFA). The sim-
ilarities among UPA, Büchi automata, and NFA make it possible to devise
efficient solutions to a number of basic problems for regular ω-languages of
ultimately periodic words, including the emptiness problem, that is, the prob-
lem of deciding whether a given language is empty, the membership problem,
that is, the problem of deciding whether a certain word belongs to a given
language, the equivalence problem, that is, the problem of deciding whether
or not two given languages coincide, the inclusion problem, that is, the prob-
lem of deciding whether a given language is included in another one, and
the size-optimization problem, that is, the problem of computing compact
representations of a given language.

Ultimately periodic languages and automata are then used to model and
to reason about possibly infinite sets of ultimately periodic time granularities,
that is, temporal structures that, starting from a given point, periodically
group instants of an underlying temporal domain. As long as one confines
oneself to single time granularities taken in isolation, there is a plenty of for-
mal systems for dealing with them in a systematic way (most notably, Cal-
endar Algebra [2], Linear Temporal Logic over integer periodicity constraints
[13], and Single-String Automata [9]). Things become much more complex
when one must cope with sets of ultimately periodic granularities instead of
single ones. We show that UPA can be successfully exploited to address a
number of basic problems about sets of time granularities. In particular, we
show how UPA allow one to solve the crucial problem of granularity compar-
ison, that is, the problem of deciding, given two sets of granularities G and
H, whether there exist G ∈ G and H ∈ H such that G ∼ H, where ∼ is one
of the commonly-used relations between granularities, e.g, partition, group,
refinement, aligned refinement [2]. A real-world application taken from clin-
ical medicine, showing how the processes of specification and validation of
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therapy plans benefit from the ability of managing sets of ultimately periodic
time granularities via UPA, concludes the paper.

The paper is organized as follows. In Section 2, we briefly describe the dif-
ferent approaches to time granularity proposed in the literature, pointing out
their relationships and limitations. In Section 3, we give a characterization
of regular ω-languages consisting of ultimately periodic words only. Next, in
Section 4 we define the class of UPA as the automaton-based counterpart to
ultimately periodic languages, and we introduce different normal forms for
them. In Section 5, we provide a simple, but efficient, solution to the empti-
ness, membership, equivalence, inclusion, and size-optimization problems for
UPA. The application of UPA to the management of time granularities is
given in Section 6, together with a real-world medical example that requires
the ability of simultaneously dealing with sets of time granularities.

2 A framework for time granularity

The original motivation for developing a theory of ultimately periodic lan-
guages and automata was to represent and to reason about sets of time gran-
ularities in a systematic way. In this section, we provide some background
knowledge about time granularity. First, we give a formal definition of it.
Then, we briefly survey the various approaches to time granularity proposed
in the literature. As a matter of fact, all of them confine themselves to the
case of single time granularities.

According to a commonly accepted perspective, any time granularity can
be viewed as the partitioning of a temporal domain in groups of elements,
where each group is perceived as an indivisible unit (a granule) [2]. In partic-
ular, most granularities of interest are modeled as infinite sequences of gran-
ules, that present a repeating pattern and, possibly, temporal gaps within
and between granules.

As it happens in most application domains, let us assume the underlying
temporal domain to be (isomorphic to) the linear order (N,<) of the natural
numbers. A time granularity is formally defined as follows.

Definition 1 A time granularity is a collection G ⊆P(N) of subsets of the
temporal domain such that distinct sets in G (henceforth called granules) do
not overlap, namely, for every pair of distinct granules g,g ′ ∈ G, we have
either t < t ′ for all t ∈ g and t ′ ∈ g ′ or t ′ < t for all t ∈ g and t ′ ∈ g ′.

Such a definition captures both time granularities that cover the whole tem-
poral domain, such as Day, Week, and Month, and time granularities with gaps
within (e.g., BusinessMonth) and between granules (e.g., BusinessDay and
BusinessWeek). Figure 1 depicts some of these granularities. Moreover, the
natural order on the elements of the temporal domain N induces a similar
order on the granules of a granularity G. Thus, given two granules g,g ′ ∈ G,
we can write g < g ′ whenever t < t ′ holds for every t ∈ g and t ′ ∈ g ′. Such
an order naturally yields a labeling of the granules of G: we say that x ∈ N
is the index of a granule g ∈ G, and we write G(x) = g, if g is the x + 1-th
element of G according to the induced order on the granules.
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Day ... ...

BusinessDay ... ...

Week ... ...

BusinessWeek ... ...

BusinessMonth ... ...

Fig. 1 Some examples of time granularities.

Various relations can be defined between pairs of time granularities, in-
cluding, for instance, grouping, refinement, partition, and aligned refinement,
which are defined as follows (further relations between time granularities are
given in [2]). A granularity G groups into a granularity H if each granule
of H is the union of some granules of G, while a granularity G refines a
granularity H if every granule of G is contained in some granule of H. A
granularity G partitions a granularity H if G both groups into H and refines
H. Finally, a granularity G is an aligned refinement of H if, for every n ∈ N,
the granule G(n) is included in the granule H(n). As an example, in Figure
1, we have that Day groups into BusinessMonth, BusinessDay refines Week,
Day partitions Week, and BusinessWeek is an aligned refinement of Week.

It is immediate to realize that the set of all structures that satisfy the
given definition of time granularity becomes uncountable as soon as the un-
derlying temporal domain is infinite. As a consequence, it is not possible to
deal with all these structures by means of a finitary formalism. However, the
problem of mastering time granularities can be tackled in an effective way by
restricting to ultimately periodic granularities, namely, to those structures
that, ultimately, periodically group elements (time points) of the underlying
temporal domain.

A number of approaches to deal with time granularity have been pro-
posed in the literature. The most common approach is the algebraic one,
which represents time granularities as suitable symbolic expressions and de-
fines the relationships between pairs of granularities by means of algebraic
operators. In this setting, the most important contributions are the formalism
of collection expressions [21], that of slice expressions [27], and the Calendar
Algebra [28]. All of them make it possible to capture granularities of practi-
cal interest, including infinite periodical ones. The different sets of algebraic
operators provided by the three formal systems and their expressiveness are
investigated in [2], where it is proved that Calendar Algebra actually sub-
sumes the other two systems.

A logical account of Calendar Algebra has been provided by Combi et
al. in [8]. It defines time granularities as models of formulas in Propositional
Linear Time Logic (PLTL) [14], where suitable propositional symbols are
used to mark the starting and ending points of granules. The expressiveness
of PLTL makes it possible to capture a large set of regular granularities,
such as, for instance, repeating patterns that can start at an arbitrary time
instant. Furthermore, problems like checking the consistency of a granularity
specification and testing the equivalence of two granularity expressions can
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be solved in a uniform way by reducing them to the validity problem for
PLTL, which is known to be decidable in polynomial space.

An alternative approach to the representation and manipulation of time
granularities has been proposed by Wijsen [36]. It models infinite granu-
larities as infinite sequences over an alphabet consisting of three symbols,
namely, � (filler), � (gap), and o (separator), which are respectively used
to denote time points covered by some granule, to denote time points not
covered by any granule, and to delimit granules. Left bounded granularities
that, starting from a given point, periodically group instants of the underlying
temporal domain can be represented as ultimately periodic words over such
an alphabet. For instance, the granularity BusinessWeek can be encoded by
the ultimately periodic word �������o ������� o.... Ultimately pe-
riodic words can be finitely represented in terms of a (possibly empty) prefix
and a repeating pattern. As an example, the granularity BusinessWeek is
represented by the empty prefix ε and the repeating pattern �������o.
Wijsen’s string-based model can be used to solve some basic problems about
granularities, such as the equivalence problem, which consists of establishing
whether or not two given representations define the same granularity, and the
minimization problem, which consists of computing the most compact rep-
resentation of a granularity. As an example, the equivalence problem can be
solved by introducing a suitable aligned form, in which separators are forced
to occur immediately after an occurrence of �. In such a way, one can en-
code each occurrence of �o by means of a single symbol J. Taking advantage
from such a rewriting, it is possible to establish a one-to-one correspondence
between strings and granularities, thus providing a straightforward solution
to the equivalence problem.

The idea of viewing time granularities as periodic strings naturally con-
nects the notion of time granularity to the field of formal languages and
automata. An original automaton-based approach to time granularity has
been proposed by Dal Lago and Montanari in [9], and later revisited by Dal
Lago, Montanari and Puppis in [10, 11, 12, 31]. Granularities are viewed as
strings generated by a specific class of automata, called Single-String Au-
tomata (SSA), thus making it possible to (re)use well-known results from
automata theory. SSA recognize languages consisting of a single ultimately
periodic word; moreover, they can be endowed with counters ranging over fi-
nite domains in order to compactly encode the redundancies of the temporal
structures1. Properties of automata are then exploited in order to efficiently
solve problems about single time granularities, such as the problem to estab-
lish whether two different SSA encode the same granularity and the granule
conversion problem, that is, the problem of properly relating granules be-
longing to different time granularities. In the last part of the paper we will
show that ultimately periodic languages and automata make it possible to
formally represent (possibly infinite) sets of ultimately periodic granularities
and to efficiently manipulate them.

1 A logical account of SSA with counters has been given by Demri in [13].
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3 Languages of ultimately periodic words

In this section, we study the properties of regular ω-languages, that is, lan-
guages of infinite words recognized by Büchi automata, consisting of ulti-
mately periodic words only. To start with, we introduce the notation and
we briefly recall basic definitions and properties of finite state and Büchi
automata.

Given a finite or infinite word w over a finite alphabet Σ, we denote by
|w| the size of w, that is, the number of symbols in w. Moreover, we denote
by w(i) the i-th symbol of w and, given two indices i and j, we denote by
w[i, j] the substring w(i)w(i + 1)...w(j) of w. An infinite word w is said
to be ultimately periodic if it can be written as uvω, where u ∈ Σ∗ and
v ∈ Σ+. The finite words u and v are respectively called an initial pattern
and a repeating pattern of w. Notice that an ultimately periodic word can
be finitely presented by several distinct pairs consisting of an initial pattern
and a repeating pattern. However, among all pairs that represent the same
ultimately periodic word, there exists exactly one which has minimum size
(the size of a pair (u, v) is |u| + |v|).

A (sequential) automaton is a tuple A = (Σ,S,∆, I, F), where Σ is a finite
alphabet, S is a finite set of states, ∆ ⊆ S × Σ × S is a transition relation,
I ⊆ S is a set of initial states, and F ⊆ S is a set of final states. We define
the size of an automaton A as the number of its states and transitions, and
we denote it by |A| as usual.

A run of A over a finite (resp., infinite) word w ∈ Σ∗ (resp., w ∈ Σω) is
a finite (resp., infinite) sequence of states ρ such that

• |ρ| = |w| + 1 (resp., |ρ| = |w| = ω),

• for every 1 6 i 6 |w| (resp., for every i > 1),
(
ρ(i),w(i), ρ(i+ 1)

)
∈ ∆.

Acceptance conditions for finite and infinite words are obviously different. If
w is a finite word and ρ is a run of A on w such that ρ(1) ∈ I and ρ(|ρ|) ∈ F,
then we say that ρ is a successful run on w and that A accepts w. If w is an
infinite word, we say that ρ is a successful run on w and that A accepts w if
ρ is such that ρ(1) ∈ I and ρ(i) ∈ F for infinitely many indices i > 1.

The language of finite words recognized by A, denoted L (A), is the set
of all and only the finite words that are accepted by A, while the ω-language
of infinite words recognized by A, denoted by Lω(A), is the set of all and
only the infinite words that are accepted by A. For the sake of simplicity, we
call (non-deterministic) finite state automaton (NFA for short) a sequential
automaton that recognizes a language of finite words; similarly, we call Büchi
automaton a sequential automaton that recognizes an ω-language of infinite
words.

Proposition 1 (Büchi [1]) The class of regular ω-languages is effectively
closed under union, intersection, and complementation, namely, given two
Büchi automata A and B, one can compute a Büchi automaton A∪B (resp.,
A ∩ B, Ā) recognizing the ω-language Lω(A) ∪Lω(B) (resp., Lω(A) ∩
Lω(B), Σω \ Lω(A)).
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Proposition 2 (Büchi [1]) An ω-language L is regular iff it is a finite
union of sets of the form UVω, where U and V are regular languages of
finite words.

Hereafter, we denote by UΣ the universal ω-language that consists of all and
only the ultimately periodic words over Σ. Moreover, given an ω-language
L ⊆ Σω, we denote by UP(L) theω-language L∩UΣ, which consists of all and
only the ultimately periodic words that belong to L. Clearly, an ω-language
L consists only of ultimately periodic words if and only if L = UP(L).

Proposition 3 (Büchi [1], Calbrix et al. [6]) Every non-empty regular
ω-language contains at least one ultimately periodic word. Moreover, if L1

and L2 are two regular ω-languages, then L1 = L2 iff UP(L1) = UP(L2).

Proof As for the first claim, by Proposition 2, any regular ω-language L can
be written as

⋃
16i6nUiV

ω
i , with ε 6∈ Vi for every 1 6 i 6 n. Since L is not

empty, there exists an index 1 6 i 6 n such that both Ui and Vi are not
empty. Therefore, L must contain an ultimately periodic word of the form
w = uvω, with u ∈ Ui and v ∈ Vi.
As for the second claim, let L1 and L2 be two regular ω-languages containing
the same ultimately periodic words. The left-to-right implication is trivial.
For the converse implication, we know, from closure properties of regular ω-
languages (see Proposition 1), that (L1\L2)∪(L2\L1) is a regularω-language,
which contains no ultimately periodic words. Thus (L1 \ L2) ∪ (L2 \ L1) is
empty and L1 = L2 follows. 2

In the following, we provide a characterization of regular ω-languages of
ultimately periodic words only, in analogy with that of Proposition 2.

To start with, we point out that there exist non-regular ω-languages con-
sisting of ultimately periodic words only: for instance, since Σω is a regular
ω-language, UP(UΣ) = UP(Σω), and UΣ 6= Σω, then, by Proposition 3, UΣ
cannot be a regular ω-language.

Proposition 4 The following closure properties hold:
i) if v is a non-empty finite word, {v}

ω is a regular ω-language consisting
of a single ultimately periodic word;

ii) if U is a regular language and V is a regular ω-language of ultimately
periodic words, then UV is a regular ω-language of ultimately periodic
words;

iii) if L1 and L2 are regular ω-languages of ultimately periodic words, then
L1∪L2 and L1∩L2 are regular ω-languages of ultimately periodic words.

Proof The claim immediately follows from closure properties of regular ω-
languages, since the above operations do not introduce words which are not
ultimately periodic. 2

As for the complementation of an ω-language of ultimately periodic words,
it must be obviously defined with respect to the universe UΣ, that is, the
complement of L ∈ UΣ is L̄ = UΣ \ L. Notice that there is no guarantee that
L̄ is regular whenever L is regular.
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Proposition 5 Regular ω-languages of ultimately periodic words are not
closed under complementation.

Proof A counterexample is given by the empty set: it trivially is a regular
ω-language of ultimately periodic words, but its complement is the universal
ω-language UΣ, which is not regular. In fact, the complement of any regular
ω-language L of ultimately periodic words is not regular, since UΣ = L ∪ L̄.
2

Given an ultimately periodic word w = uvω, the set of its repeating
patterns is clearly infinite and it contains, among others, the finite words v,
v2, v3, ... To group together the different repeating patterns of an ultimately
periodic word, we define a suitable equivalence relation. Such an equivalence
will play an essential role in the characterization of regular ω-languages of
ultimately periodic words we are going to provide.

Definition 2 Let ∼= ⊆ Σ∗ × Σ∗ be an equivalence relation such that u ∼= v
iff the two infinite periodic words uω and vω share a common suffix, namely,
there exist x,y ∈ Σ∗ and z ∈ Σω such that uω = xz and vω = yz.

Notice that in Definition 2 one can always assume either x or y to be ε.
It can be easily checked that all repeating patterns of a given ultimately

periodic word w are equivalent. Moreover, they can be obtained by choos-
ing different rotations and/or different repetitions of the primitive repeat-
ing pattern of w, namely, the shortest substring w[i, j] of w such that (i)
w = w[1, i − 1](w[i, j])ω and (ii) either i = 1 or w(j) 6= w(i − 1). Con-
versely, if v is a repeating pattern of an ultimately periodic word w and v ′
is equivalent to v, then v ′ is also a repeating pattern of w.

Given an ω-language L and a finite word v, we say that L features v as a
repeating pattern if L contains an ultimately periodic word w having v as a
repeating pattern; moreover, if v belongs to a language of the form V+, with
V ⊆ Σ∗, then we say that v is a V-aligned repeating pattern.

Below, we prove some fundamental properties of ω-languages of the form
Vω, where V ⊆ Σ∗, with respect to the repeating patterns they feature.

Lemma 1 Given a language V, for every repeating pattern v featured by Vω,
there exists an equivalent V-aligned repeating pattern z featured by Vω.

Proof Let v be a repeating pattern featured by Vω. By definition, Vω con-
tains an infinite word w = u1u2u3..., with ui ∈ V for all i > 0, which is
ultimately periodic with v as a repeating pattern. Thus, w can be written as
uvω, where u is a suitable finite word. Let i0 be a sufficiently large index such
that u turns out to be a prefix of u1u2...ui0 (or, equivalently, ui0+1ui0+2...
turns out to be a suffix of vω). Moreover, let f be the function that maps
any natural number i > i0 to the value

f(i) =
(
|u1u2...ui| − |u|

)
mod |v|.

Since the image of f is finite, by the Pigeonhole Principle there exist two
indices i, i ′, with i0 6 i < i ′, such that f(i) = f(i ′). By definition of f, we
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have that the length of the substring z = ui+1...ui′ of w is a multiple of
|v|. Since i > i0, z is also a substring of vω, which implies that (i) z is a
repeating pattern equivalent to v and (ii) z ∈ V+. 2

Proposition 6 Given a language V, if Vω is non-empty and it features only
equivalent repeating patterns, then Vω = {v}

ω for a suitable non-empty finite
word v.

Proof Suppose that Vω is a non-empty ω-language featuring only equivalent
repeating patterns. Let v1, v2, v3, ... be all and only the V-aligned repeating
patterns featured by Vω.
We first prove that, for every pair of indices i, j > 0, vωi = vωj . Let i, j > 0 be
two generic indices and let qi and qj be two positive natural numbers such
that qi|vi| = qj|vj|. We define v ′i = v

qi

i and v ′j = v
qj

j . By hypothesis, we have
vi ∼= vj, from which v ′i ∼= v ′j follows. Below, we prove that v ′i and v ′j coincide.
Since v ′i ∼= v ′j and |v ′i| = |v ′j|, v

′
i must be a rotation of v ′j, namely, there exist

two finite words x and y such that v ′i = xy and v ′j = yx. Since both v ′i and
v ′j belong to V+, we have that v ′i,j = v ′iv

′
j belongs to V+ and thus it is a

repeating pattern for Vω. Hence, by hypothesis, v ′i,j ∼= v ′i. This implies that
v ′i,j (= xyyx) is a rotation of v ′iv

′
i (= xyxy) and hence there is a suitable

(possibly empty) word z such that (z)(xyyx) is a prefix of (xy)(xy)(xy).
Now, let us denote by u the primitive repeating pattern of xy. Since (z)(xy)
is a prefix of (xy)(xy)(xy), we have that either z = ε or zω = (xy)ω. From
the minimality of u, it follows that z = up for some p > 0. Therefore, since
(zxy)(yx) is also a prefix of (xy)(xy)(xy), |zxy| is a multiple of |u|, and
|yx| = |xy|, we have that yx = uq (= xy) for some q > 0. This allows us to
conclude that, for every pair of indices i, j > 0, v ′i (= xy) = v ′j (= yx) and
hence vωi = vωj .
Now, let v be the shortest repeating pattern of the infinite periodic word vωi ,
where i > 0 is an arbitrary index (v does not depend on i). We have that
Vω = {v}

ω. 2

Proposition 7 Given a language V, if Vω features at least two repeating
patterns which are not equivalent, then Vω contains an infinite word which
is not ultimately periodic.

Proof Let Vω be an ω-language featuring two non-equivalent repeating pat-
terns u and v. By Lemma 1, there exist two V-aligned repeating patterns
u ′, v ′ ∈ V+ such that u ′ ∼= u and v ′v. For every i > 0, we denote by zi the
finite word (u ′)i(v ′)i and we define the infinite word w = z1z2.... Clearly,
zi ∈ V+ holds for all i > 0 and hence w belongs to Vω. It remains to show
that w is not an ultimately periodic word. Suppose, by way of contradiction,
that w is an ultimately periodic word having z ′ as repeating pattern. By
construction, there exists an index i such that (u ′)|z′| is a substring of zi
and thus of w. Since z ′ is a repeating pattern of w and

∣∣(u ′)|z′|
∣∣ is a multiple

of |z ′|, we have that (u ′)|z′| is a repetition of some rotation of z ′ and hence
u ′ ∼= z ′. In a similar way, we can show that v ′ ∼= z ′. By transitivity, we have
u ′ ∼= v ′ and thus u ∼= v, which is against the hypothesis of u and v being
two non-equivalent repeating patterns. 2
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Proposition 8 Given a language V, exactly one of the following conditions
holds:
1. Vω features only equivalent repeating patterns;
2. Vω features infinitely many non-equivalent repeating patterns.

Proof Let us assume that Vω features at least two non-equivalent repeating
patterns u and v. By Lemma 1, Vω features two V-aligned repeating patterns
u ′ and v ′, with u ′ ∼= u and v ′ ∼= v. Moreover, since ∼= is an equivalence
relation and u 6∼= v, we have u ′ 6∼= v ′. Now, let n = |u ′| + |v ′| and, for every
i > 0, pi = ni−1 and zi = (u ′)pi(v ′)pi . Every word zi is clearly a V-aligned
repeating pattern featured by Vω. We prove that the words zi are pairwise
non-equivalent, that is, zi 6∼= zj for every pair of distinct indices i, j > 0.
Suppose, by way of contradiction, that there exist two indices 0 < i < j such
that zi ∼= zj. By definition of ∼=, there exists an infinite periodic word w that
features both zi and zj (= (u ′)pj(v ′)pj) as repeating patterns. Moreover,
since i < j, we have that pj (= nj−1) is a multiple of |zi| (= ni), which
implies that (u ′)pj is a rotation of some repetition of zi. This shows that
u ′ ∼= zi. A similar argument shows that v ′ ∼= zi. Thus, by transitivity, we
obtain u ′ ∼= v ′, which contradicts the hypothesis of u ′ and v ′ being non-
equivalent repeating patterns. 2

The following theorem shows how the above characterization results can
be easily generalized to the whole class of regular ω-languages consisting of
ultimately periodic words only.

Theorem 1 Given a regular ω-language L, the following conditions are
equivalent:
i) L consists of ultimately periodic words only;
ii) L features only finitely many non-equivalent repeating patterns;
iii) L is a finite union of ω-languages of the form U {v}

ω, where U is a
regular language and v is a non-empty finite word.

Proof We first prove the implication from i) to ii) by contraposition. Let
L be a regular ω-language. We can write L as a finite union of the form⋃

16i6nUiV
ω
i . If L features infinitely many non-equivalent repeating pat-

terns, then there exists an index 1 6 i 6 n such that UiVωi (and hence Vωi )
features at least two non-equivalent repeating patterns. Thus, by Proposition
7, it would follow that Vωi (and hence L) contains an infinite word which is
not ultimately periodic.
As for the implication from ii) to iii), let L be a regular ω-language featuring
only finitely many non-equivalent repeating patterns. By Proposition 2, we
can write L as a finite union of the form

⋃
16i6nUiV

ω
i . Moreover, from

Proposition 8, it follows that each ω-language Vωi features only equivalent
repeating patterns (otherwise, L would feature infinitely many non-equivalent
repeating patterns). Then, by exploiting Proposition 6, we can write each ω-
language Vωi as {vi}

ω, where vi is a suitable non-empty finite word. As a
consequence, L can be written as a finite union of the form

⋃
16i6nUi {vi}

ω.
The last implication from iii) to i) is trivial. 2
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4 Ultimately periodic automata

In this section, we provide an automata counterpart to regularω-languages of
ultimately periodic words. Theorem 1 basically states that these languages
model sets of ultimately periodic words with possibly infinitely many ini-
tial patterns, but only a finite number of non-equivalent repeating patterns.
Moreover, it yields a straightforward definition of a restricted class of Büchi
automata that captures exactly the regular ω-languages of ultimately peri-
odic words. As a matter of fact, an alternative view of such a class of automata
is also possible: they can be seen as a natural extension of non-deterministic
finite state automata (NFA for short), where final states actually recognize
infinite words of the form vω. This alternative view will clearly show up in
the definition of prefix automaton given in Section 4.2.

As a preliminary step, we introduce the notion of strongly connected
component of a state of an automaton A = (Σ,S,∆, I, F). Let us view A as a
finite labeled graph. The strongly connected component of a state s ∈ S is the
subgraph of A induced by the maximal set of states Ms that are reachable
from s and from which s is reachable, that is, Ms consists of all and only
the states s ′ in S such that both (s, s ′) and (s ′, s) belong to ∆∗. A state
s ∈ S is called transient if (s, s) /∈ ∆+ (notice that it immediately follows
that a transient state does not belong to any loop of A). Let us consider the
following subclass of Büchi automata (for the sake of simplicity, we assume
every state of the automaton to be reachable from any initial state).

Definition 3 An ultimately periodic automaton (UPA for short) is a Büchi
automaton A = (Σ,S,∆, I, F) such that, for every final state s ∈ F, either
s is a transient state or the strongly connected component of s is a simple
loop2.

Notice that Definition 3 does not prevent non-transient final states from
having in-degree or out-degree greater than 1 in (the finite labeled graph
corresponding to) A.

Examples of UPA are given in Figure 2, with reference to the alphabet for
time granularity introduced in Section 2 which consists of the three symbols
�, �, and J. The UPA to the left recognizes the ω-language

(
{�}
∗
{�J}

ω)∪(
{�}
∗
{�J}

∗
{�}

ω) while that to the right recognizes theω-language {��J}
ω∪

{�J}
ω. The former represents the (unanchored finite or infinite) granularities

that group days two by two, while the latter represents the set consisting of
two infinite granularities that group days respectively two by two and three
by three.

By exploiting standard construction methods for Büchi automata, one
can easily show that UPA-recognizable languages are effectively closed under
unions, intersections with regular ω-languages, left-concatenations with reg-
ular languages, generalized products, and homomorphisms (i.e., substitutions
of non-empty strings for symbols):
i) if L1 and L2 are two UPA-recognizable ω-languages, then L1 ∪ L2 is an

UPA-recognizable ω-language as well;
2 A strongly connected component is said to be a simple loop if and only if all

its vertices have both in-degree and out-degree equal to 1.
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Fig. 2 Two examples of UPA.

ii) if L1 is a regular ω-language and L2 is an UPA-recognizable ω-language,
then L1 ∩ L2 is an UPA-recognizable ω-language as well;

iii) if L1 and L2 are two UPA-recognizableω-languages, then theω-language
L1 × L2 =

{
w : ∃ u ∈ L1. ∃ v ∈ L2. ∀ i > 0. w(i) =

(
u(i), v(i)

)}
is

UPA-recognizable as well;
iv) if L1 is a regular language and L2 is an UPA-recognizable ω-language,

then L1L2 is an UPA-recognizable ω-language as well;
v) if L is an UPA-recognizable ω-language and τ is a function from Σ to

Σ+, then the ω-language τ(L) =
{
τ(a1)τ(a2)... : a1a2... ∈ L

}
is an

UPA-recognizable ω-language as well.
In addition, it is easy to see that UPA satisfy a weak form of closure un-
der ω-exponentiation, namely, for every non-empty finite word v, there ex-
ists an UPA recognizing the singleton ω-language {v}

ω. On the other hand,
UPA-recognizable languages are not closed under complementation: this is an
immediate consequence of Proposition 5 and Theorem 2 below, which char-
acterizes UPA-recognizable languages. Moreover, the deterministic versions
of UPA are strictly less expressive than the non-deterministic ones: as it is
well-known, the UPA-recognizable ω-language {a,b}∗{b}ω is not recogniz-
able by any deterministic Büchi automaton (and thus by any deterministic
UPA).

Theorem 2 UPA recognize exactly the regular ω-languages of ultimately
periodic words.

Proof Let A = (Σ,S,∆, I, F) be an UPA, w be an infinite word accepted by
A, and ρ be a successful run of A on w. We denote by s a final state of A that
occurs infinitely often in ρ. Clearly, s is not a transient state and hence, by
definition of UPA, its strongly connected component is a simple loop. Thus,
there is a unique infinite run ρ ′ of A that starts from s and visits s infinitely
often. Such a run is a suffix of ρ of the form ρ ′ =

(
ρ(i)ρ(i+ 1)...ρ(j− 1)

)ω,
where i and j are the positions of two consecutive occurrences of s in ρ. This
proves that ρ, and hence w, are ultimately periodic sequences.
As for the converse implication, we have to show that, given a regular ω-
language L of ultimately periodic words, there is an UPA recognizing L.
By exploiting Theorem 1, we know that L =

⋃
16i6nUi {vi}

ω for a suitable
n, suitable regular languages U1, ...,Un, and suitable non-empty finite words
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v1, ..., vn. Such a characterization implicitly defines the three basic operations
on UPA: the ω-exponentiation of a non-empty finite word, the concatenation
with a regular language, and the finite union. Thus, from closure properties
of UPA, it follows that there exists an UPA recognizing L. 2

In the following subsections, we will introduce three normalized forms
for UPA, which we will respectively call normal form, prefix-friendly form,
and canonical form. We will prove that these normalized forms satisfy sev-
eral desirable properties (e.g., the canonical form is proved to be unique,
up to isomorphisms, among all equivalent UPA) and ease algorithmic ma-
nipulation. We will also prove that normal and prefix-friendly forms can be
computed at low cost (precisely, the former can be computed in linear time
and the latter can be computed in quadratic time with respect to the input
UPA).

4.1 A normal form for UPA

Given a loop C of an UPA A = (Σ,S,∆, I, F), we say that C is a final loop
if it contains at least one final state. Moreover, we say that a final loop C
encodes the repeating pattern v 6= ε if and only if there is a run ρ of A on vω
that starts with a state s ∈ C. It is easy to see that a final loop C encodes
only equivalent repeating patterns and, conversely, if v and v ′ are equivalent
repeating patterns, then C encodes v iff C encodes v ′. Thus, given two final
loops C1 and C2, either C1 and C2 encode the same repeating patterns, or
C1 and C2 encode repeating patterns which are pairwise non-equivalent.

Due to the peculiar structure of UPA, every successful run of an UPA
consists of a finite prefix followed by an infinite repetition of a final loop.
In particular, given a final loop C, the number and the positions of the final
states of C are irrelevant (C encodes the same set of repeating patterns, inde-
pendently from which states of C are chosen to be final). Similarly, marking a
transient state as final state has no effect, since in any run of the automaton
it occurs at most once. Finally, we can assume that no transitions exit from
final loops (if this were the case, we could simply duplicate the final loop and
let one copy of it to be final with no exiting transition and the other copy
to be non-final with some exiting transitions). Putting together the above
observations, we can obtain a normal form for UPA, which forces final states
to coincide with the states of the final loops and forbids transitions exiting
from final loops.

Definition 4 An UPA A = (Σ,S,∆, I, F) is said to be in normal form if the
following conditions hold:
• every final state is reachable from an initial state,
• every final state belongs to a (final) loop,
• every state in a final loop is final,
• there are no transitions exiting from final loops, namely, for every (r,a, s) ∈
∆, r ∈ F implies s ∈ F.
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By restricting to UPA in normal form, one can easily distinguish between
components recognizing initial patterns and components recognizing repeat-
ing patterns of ultimately periodic words (note that the former components
behave like NFA, while the latter ones behave like single-string automata
[9]). The following proposition proves that there is no loss of expressiveness
if we restrict ourselves to UPA in normal form.

Proposition 9 Given an UPA A, one can compute in time O(|A|) an equiv-
alent UPA B in normal form. Moreover, |B| is linear in |A|.

Proof Let A = (Σ,S,∆, I, F) and C1, ...,Ck be all and only the final loops
of A. By definition of UPA, C1, ...,Ck are disjoint subgraphs of S. For every
1 6 i 6 k, we introduce a copy C̃i of each final loop Ci and, for every
state s of Ci, we denote by s̃ the corresponding state of C̃i. We then define
B = (Σ,S ′,∆ ′, I ′, F ′) as follows:
• S ′ = S ∪

⋃
16i6k

{
s̃ : s ∈ Ci

}
;

• ∆ ′ contains all triples of the form
1. (r,a, s), with (r,a, s) ∈ ∆,
2. (r,a, s̃), with (r,a, s) ∈ ∆, r 6∈ Ci, s ∈ Ci, and 1 6 i 6 k,
3. (̃r,a, s̃), with (r,a, s) ∈ ∆, r, s ∈ Ci, and 1 6 i 6 k;

• I ′ = I ∪
⋃

16i6k

{
s̃ : s ∈ I, s ∈ Ci

}
;

• F ′ =
⋃

16i6k

{
s̃ : s ∈ Ci

}
.

It can be easily checked that B is an UPA in normal form equivalent to A.
2

On the grounds of Proposition 9, one can devise a simple linear-time algo-
rithm that receives a generic UPA as input and returns an equivalent UPA
in normal form as its output.

4.2 A prefix-friendly form for UPA

In the following, we introduce an alternative way of representing regular ω-
languages of ultimately periodic words as NFA over an extended alphabet. By
definition, any UPA A = (Σ,S,∆, I, F) in normal form contains only finitely
many (pairwise disjoint) final loops, say C1, ...,Ck. Hereafter, we denote by
ΣA an extended alphabet, which consists of symbols from Σ plus symbols of
the form (s,Ci), with 1 6 i 6 k and s being a state of Ci. Intuitively, an
NFA representing A can be obtained by (i) adding a new global final state f,
(ii) removing every transition departing from a final state, and (iii) adding a
(s,Ci)-labeled transition from s to f for each state s belonging to the final
loop Ci.

Definition 5 Given an UPA A = (Σ,S,∆, I, F) in normal form, we define
the prefix automaton of A as the NFA Apre = (ΣA,S ′,∆ ′, I ′, F ′), where
• S ′ = S ∪ {f}, with f being a fresh state not belonging to S;
• ∆ ′ contains all triples of the form
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Fig. 3 An UPA in normal form and its prefix automaton.

1. (q,a, s), with (q,a, s) ∈ ∆, q ∈ S \ F, and s ∈ S,
2. (s,b, f), with b = (s,Ci), s ∈ Ci, and 1 6 i 6 k;

• I ′ = I;
• F ′ = {f}.

As an example, Figure 3 depicts an UPA A in normal form, which recognizes
the language

{
�(JJ)nJ��ω : n ∈ N

}
∪
{
�Jω

}
, together with its prefix

automaton Apre , which recognizes the language
{
�(JJ)n�b3 : n ∈ N

}
∪{

�b4

}
, where b3 = (s3,C3), b4 = (s4,C4), C3 is the final loop of s3, and

C4 is the final loop of s4.
Notice that the prefix automaton Apre uniquely identifies the UPA A,

that is, one can obtain A from Apre by (i) marking as final all states in
C1, ...,Ck, (ii) adding the transitions of C1, ...,Ck, which can be recovered
from the symbols belonging to extended alphabet ΣA, and (ii) removing the
global final state f together with its entering transitions. This basically means
that the NFA Apre is nothing but an alternative representation of A.

For the sake of brevity, given two states r, s of A and a finite word u, we
write r u−−→ s whenever there exists a run of A on u that starts with r and

ends with s. Similarly, we write r
u
−}→ s (resp., r

u
−⊗→ s) whenever there

exists a run of A on u that starts with r, ends with s, and traverses at least
one final state of A (resp., no final states of A). It is easy to see that the
prefix automaton Apre recognizes the language{

ub : ∃ 1 6 i 6 k. ∃ s0 ∈ I. ∃ s ∈ Ci. b = (s,Ci), s0
u
−⊗→ s

}
,

which is called the prefix language of A.
The correspondence between UPA (in normal form) and prefix automata

does not lift directly to the language level: the prefix languages of two UPA
A and A ′ may be different even in the case in which Lω(A) = Lω(A ′).
As an example, Figure 4 depicts an UPA A ′, which is equivalent to the UPA
of Figure 3, and its prefix automaton A ′pre , which is not equivalent to the
prefix automaton Apre of Figure 3. To get rid of such an asymmetry, that is,
to guarantee that L (Apre) = L (A ′pre) if and only if Lω(A) = Lω(A ′), we
must impose suitable conditions on the structure of the transition relations
of A and A ′.
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Fig. 4 Equivalence of UPA does not transfer to their prefix automata.

Definition 6 An UPA A = (Σ,S,∆, I, F) is said to be prefix-friendly if it
satisfies the following conditions:

(C1) A is in normal form,

(C2) every final loop C of A has the minimum number of states (among all
loops that encode the same set of repeating patterns),

(C3) A has the minimum number of final loops (among all equivalent UPA),

(C4) there are no pairs of transitions of the form (q,a, s) and (r,a, s), with
q ∈ S \ F and r, s ∈ F.

Figure 3 and Figure 4 respectively show an prefix-friendly UPA and a
prefix-friendly (equivalent) one.

Lemma 2 Final loops of a prefix-friendly UPA are pairwise non-isomorphic.

Proof This trivially follows from the minimality of the number of final loops.
2

Lemma 3 If A and A ′ are equivalent prefix-friendly UPA, then A and A ′

have isomorphic final loops.

Proof Let C be a final loop of A. Since all states of A are reachable from
initial states and since A has the minimum number of final loops, there
exists a word w ∈ Lω(A) that features all and only the repeating patterns
encoded by C. Moreover, since A ′ is equivalent to A, we have w ∈ Lω(A ′)
and hence there is a final loop C ′ in A ′ that encodes all and only the repeating
patterns featured byw. From this, it easily follows that C and C ′ are bisimilar
loops. Finally, since both C and C ′ have the minimum number of states, it
immediately follows that C and C ′ are isomorphic. 2

In virtue of Lemma 2 and Lemma 3, given two equivalent prefix-friendly
UPA A and A ′, we can identify the symbols of the alphabet ΣA and those of
the alphabet ΣA′ . Formally, we say that two symbols b ∈ ΣA and b ′ ∈ ΣA′

coincide iff

1. either they both belong to Σ and b = b ′,
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2. or b = (s,C) and b ′ = (s ′,C ′), where C and C ′ are isomorphic final
loops of A and A ′, respectively, and s is the state of C that corresponds
to s ′ in C ′ under the unique3 isomorphism between C and C ′.

The above correspondence can be naturally lifted to languages over ΣA and
ΣA′ : we say that the two prefix automata Apre and A ′pre are equivalent iff
L (Apre) = L (A ′pre), that is, for every finite word u ∈ L (Apre) (resp.,
u ′ ∈ L (A ′pre)), there is a finite word u ′ ∈ L (A ′pre) (resp., u ∈ L (Apre))

such that |u| = |u ′| and, for all 1 6 i 6 |u|, the symbols u(i) and u ′(i)
coincide.

Lemma 4 Given a prefix-friendly UPA A over the alphabet Σ, its prefix
automaton Apre recognizes all and only the finite words of the form ub, with
b ∈ ΣA\Σ and u being the shortest initial pattern of some word w ∈ Lω(A).

Proof Let A = (Σ,S,∆, I, F). Suppose that the prefix automaton Apre ac-
cepts a finite word of the form ub, with u ∈ Σ∗ and b = (s,C). From the
definition of prefix automaton, we know that there is a run ρ of A on u
that starts from an initial state, traverses only non-final states, and finally
enters the final loop C at state s. Let v be a repeating pattern encoded by C
starting from s. Note that A accepts the ultimately periodic word w = uvω.
We have to show that u is the shortest initial pattern of w, namely, that the
last symbol u(|u|) of u differs from the last symbol v(|v|) of v. Let q be the
(non-final) state that immediately precedes s inside the run ρ and let r be
the (final) state that immediately precedes s inside the loop C. Clearly, we
have that

(
q,u(|u|), s

)
∈ ∆. Moreover, since v is encoded by C starting from

s, we have that t s
v
−}→ s. This shows that

(
r, v(|v|), s

)
∈ ∆. Finally, since

A satisfies Condition C4 of Definition 6, we obtain u(|u|) 6= v(|v|).
As for the converse direction, let w be an ultimately periodic word accepted
by A and let ρ be a successful run of A on w. We denote by i the position
of the first final state s that occurs in ρ and by j the position of the second
occurrence of s in ρ. We then denote by u and v, respectively, the substrings
w[1, i−1] and w[i, j−1] of w. By definition of prefix automaton, the sequence
ρ(1)...ρ(i)f, where f is the global final state of Apre , is a successful run of Apre

on the finite word ub, where b = (s,C) and C is the (unique) final loop of A
that contains s. This shows that ub is accepted by Apre . It remains to prove
that u is the shortest initial pattern of w. Let q = ρ(i− 1) and r = ρ(j− 1).
Since, A satisfies Condition C4 of Definition 6 and, by construction, q ∈ S\F,
r, s ∈ F, and (q,u(|u|), s), (r, v(|v|), s) ∈ ∆, we have that u(|u|) 6= v(|v|). This
shows that u is the shortest initial pattern of w. 2

The following theorem proves that equivalent prefix-friendly UPA have
equivalent corresponding prefix automata.

3 Given two loops C and C ′ with the minimum number of states, there exists
at most one isomorphism between C and C ′, since otherwise, by transitivity, there
would exist a non-trivial endomorphism in C, thus contradicting the minimality of
C.
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Theorem 3 Let A and A ′ be two prefix-friendly UPA. We have that

Lω(A) = Lω(A ′) ⇔ L (Apre) = L (A ′pre).

Proof Every ultimately periodic word has a unique shortest initial pattern.
Therefore, by Lemma 4, the ω-language recognized by A (resp., A ′) is
uniquely determined by the language recognized by Apre (resp., A ′pre) and,
vice versa, the language recognized by Apre (resp., A ′pre) is uniquely deter-
mined by the ω-language recognized by A (resp., A ′). 2

Given an UPA A in normal form, one can efficiently build an equivalent
prefix-friendly UPA B by applying the following sequence of normalization
steps:
i) Minimize the size of each final loop. Such an operation collapses all

equivalent states in each final loop, thus producing an UPA that satisfies
Conditions C1, C2 of Definition 6.

ii) Minimize the number of final loops. Such an operation collapses all
isomorphic (minimal) final loops, thus producing an UPA that satisfies
Conditions C1–C3 of Definition 6.

iii) Add shortcuts towards final loops. Such an operation produces an
UPA that satisfies all conditions of Definition 6.

The above normalizations steps can be implemented as follows. As a prelim-
inary remark, we note that the minimization procedures for the size and the
number of final loops can be viewed as particular cases of the solution to the
single function coarsest partition problem. We thus refer the reader to [29]
for further details and proofs.

Let A = (Σ,S,∆, I, F) be an UPA in normal form and let us consider a
final loop C of A. Two states s, s ′ of C are said to be equivalent if we have
s

v−−→ s and s ′ v−−→ s ′, for some finite word v. Minimizing the size of the
final loop C amounts to collapse all equivalent states of C. Thus, suppose
that C is a final loop of the form

s1
a1−−→ s2

a2−−→ ...
an−1−−→ sn

an−−→ s1

and let v be the repeating pattern a1a2...an. One can easily verify that two
states si and sj, with 1 6 i 6 j 6 n, are equivalent iff the value j− i mod n
is the offset of an occurrence of v as a substring of vv. Thus, the equivalence
class [si] of a state si of C is given by the set

{
sj : 1 6 j 6 n, j ≡ i (mod p)

}
,

where p denotes the offset of the first non-trivial occurrence of v as a substring
of vv (note that the value p can be efficiently computed in linear time using
Knuth-Morris-Pratt string matching algorithm [18]).

Finally, the operation of collapsing equivalence classes of C into single
states can be implemented by first replacing the final loop C with a new final
loop [C] of the form

[s1]
a1−−→ [s2]

a2−−→ ...
ap−1−−→ [sp]

ap−−→ [s1]
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and then replacing every transition of A of the form (q,a, si), where q 6∈ F,
by the triple

(
q,a, [si]

)
. On the ground of the above arguments, it is easy to

devise a linear time procedure that minimizes the size of each final loop of a
given UPA A in normal form.

As for the minimization of the number of final loops, this amounts to
collapse all isomorphic final loops of A, under the assumption that A is an
UPA that satisfies Conditions C1, C2 of Definition 6. Indeed, two final final
loops C and C ′ of an UPA encode the same set of repeating patters iff they
are bisimilar. Moreover, if C and C ′ have the minimum number of states,
then they are bisimilar iff they are isomorphic.

Isomorphic final loops of A can be efficiently found by (i) defining a total
ordering on the alphabet Σ, (ii) representing each final loop C of A with the
lexicographically least primitive repeating pattern vC encoded by C, and (iii)
sorting the loops according to the lexicographic order of their representatives
(in this way, isomorphic final loops have the same representatives and hence
they appear contiguous in the ordered list).

We recall that, given a final loop C, the lexicographically least primitive
repeating pattern vC of C can be computed in linear time by using the
algorithms described in [3, 34]. Moreover, sorting the loops according to the
lexicographic order of their representatives can be done in linear time using
the well-known radix-sort algorithm. This shows that the minimization of
the number of final loops of a given UPA can be done in linear time.

The last normalization step consists in the removal of redundant transi-
tions of A and in the addition of shortcuts towards their target states. Let
A = (Σ,S,∆, I, F) be an UPA that satisfies Conditions C1–C3 of Definition
6. We say that a transition (q,a, s) of A is redundant with respect to another
transition (r,a ′, s ′), if q ∈ S \ F, r ∈ F, s = s ′ ∈ F, and a = a ′ (notice that
the UPA that satisfy Condition C4 of Definition 6 are exactly those UPA
which contain no redundant transitions). The addition of shortcuts and the
removal of redundant transitions are implemented in two phases as follows.

The first phase iteratively performs the following steps: (i) select two tran-
sition of A of the form (q,a, s) and (r,a, s), with (q,a, s) being redundant
with respect to (r,a, s), (ii) mark the transition (q,a, s) so that it cannot be
selected again, (iii) add a new transition (t,b, r) (if it does not exist already)
for each existing transition (t,b,q), with t ∈ S \F, and (iv) mark r as a new
initial state whenever q is an initial state.

The second phase starts when there are no more redundant (unmarked)
transitions and it consists in the removal of previously-marked redundant
transitions. Notice that it is necessary to postpone the removal of the redun-
dant transitions to this second phase, since, otherwise, the algorithm may
enter an infinite loop where a single transition is alternatively added to and
removed from the automaton.

One can easily verify that the resulting automaton is a prefix-friendly
UPA equivalent to the input automaton A. In particular, the following in-
variant holds during the first phase: for every successful run on an infinite
word w, there is a successful run on w that uses only unmarked transitions.
Moreover, the whole process can be implemented by a procedure which takes
quadratic time in the size of the input automaton A.
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Proposition 10 Given an UPA A in normal form, one can compute in
time O(|A|

2) an equivalent prefix-friendly UPA B. Moreover, |B| is at most
quadratic in |A| and the number of states of B is less than or equal to the
number of states of A.

Proof By applying the proposed sequence of normalization steps to a given
UPA A in normal form, one obtains an equivalent prefix-friendly UPA B. All
normalization steps, but the last one, can be computed by suitable linear-time
algorithms and the intermediate results are UPA with size (resp., number of
states) less than or equal to the size (resp., number of states) of the original
UPA A. As for the last normalization step, the resulting prefix-friendly UPA
B is obtained from an intermediate UPA A ′ by simply adding new transitions
and removing redundant ones. This shows that the the size of B is at most
quadratic in the size of the original UPA A and, similarly, that the number
of states of B is less than or equal to the number of states of A. 2

4.3 The canonical form for UPA

We conclude the section by introducing a canonical form for UPA, , that is,
a representation of regular ω-language of ultimately periodic words which
turns out to be unique up to isomorphisms.

Definition 7 An UPA A = (Σ,S,∆, I, F) is said to be in canonical form if
A is prefix-friendly and, in addition, the prefix automaton Apre of A is a
deterministic finite state automaton (DFA for short) having the minimum
number of states (among all equivalent DFA).

As a matter of fact, an UPA in canonical form may be exponentially larger
than an equivalent UPA in prefix-friendly form (this basically follows from
the fact that DFA may be exponentially larger than equivalent NFA [15]).

The following theorem shows that the canonical form of an UPA is unique,
up to isomorphisms, among all equivalent UPA.

Theorem 4 Let A and A ′ be two UPA in canonical form. We have that A
and A ′ are equivalent iff they are isomorphic.

Proof By Theorem 3, the prefix-friendly UPA A and A ′ are equivalent iff the
corresponding prefix automata Apre and A ′pre are equivalent. Moroever, since
A and A ′ are in canonical form, Apre and A ′pre are DFA having the minimum
number of states. Hence they are equivalent iff they are isomorphic. Finally,
since the UPA A (resp., A ′) is uniquely determined by its prefix automaton
Apre (resp., A ′pre), we can conclude that A and A ′ are equivalent iff they are
isomorphic. 2

Let us show now how to compute the canonical form of a given prefix-
friendly UPA A. As a preliminary remark, observe that any transformation
of an UPA A that preserves the corresponding prefix language L (Apre) re-
sults in an UPA A ′ which has the same structure of A with respect to the
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transitions towards final states (intuitively, such a property follows from the
fact that the final loops of A are “hidden” inside the alphabet of the prefix
automaton). In particular, it follows that A ′ is prefix-friendly whenever A
is prefix-friendly. Given such a property, it becomes clear that the canonical
form of a prefix-friendly UPA A can be obtained by applying the following
sequence of transformations:

i) Compute the prefix automaton. Such an operation produces an NFA
that implicitly represents the original prefix-friendly UPA.

ii) Compute the minimal equivalent DFA. Such an operation produces
a DFA that has the minimum number of states and that recognizes the
prefix language of the original UPA.

iii) Convert the minimal DFA back to an UPA. Such an operation
eventually produces an UPA in canonical form.

Note that all transformations, but the second one, can be computed at low
cost. On the other hand, the second transformation is the most demanding
one from the computational point of view, since, in the general case, deter-
ministic prefix automata may be exponentially larger than equivalent non-
deterministic prefix ones. From experimental comparisons [7], it turns out
that Brzozowski’s algorithm [5] is the most efficient solution to the problem
of determinizing and minimizing prefix automata.

For the sake of completeness, we provide a short description of Brzo-
zowski’s algorithm. Given a generic NFA A ′, the algorithm first reverses the
transitions of A ′ (we denote such an operation by Rev), then it performs a
subset construction to build a DFA equivalent to the reversed copy of A ′

(we denote such an operation by Det), and finally it iterates such two oper-
ations once more. It can be proved that Det(Rev(Det(Rev(A ′)))) is a DFA
equivalent to the NFA A ′ having the minimum number of states among all
equivalent DFA. Moreover, such a construction requires, in the worst case,
O(2n) time and space, where n is the number of states of the input automa-
ton A ′.

Proposition 11 Given an UPA A in normal form, one can compute in time
O(2|A|) an equivalent UPA B in canonical form. Moreover, the size of B is,
in the worst case, a simple exponential in the size of A.

Proof Let A be an UPA in normal form. By exploiting Proposition 10, one
can compute an equivalent prefix-friendly UPA A ′ whose number of states
is less than or equal to the number of states of A. Then, by applying the
above described sequence of normalization steps, one can transform A ′ into
an equivalent UPA B in canonical form. As for the complexity of the whole
procedure, recall that A ′ can be computed from A in quadratic time. More-
over, computing the prefix automaton of A ′ (and, vice-versa, computing the
UPA which corresponds to any given prefix automaton), can be done in
linear time. Finally, since Brzozowski’s algorithm takes simple exponential
time with respect to the number of states of the input automaton, comput-
ing the minimal DFA equivalent to the prefix automaton of A ′ requires time
O(2|A′|) = O(2|A|). 2
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5 UPA-recognizable languages: algorithms and complexity

UPA can be successfully exploited to solve a number of classical problems
about sets of ultimately periodic words. We will focus our attention on the
following basic problems:
• Emptiness problem. It consists of deciding whether a given UPA A

recognizes the empty language.
• Membership problem. It consists of deciding whether a given UPA A

recognizes a given ultimately periodic word w, represented as a pair (u, v)
consisting of a finite prefix and a finite non-empty repeating pattern.

• Equivalence problem. Given two UPA A and B, it consists of deciding
whether Lω(A) = Lω(B).

• Inclusion problem. Given two UPA A and B, it consists of deciding
whether Lω(A) ⊆ Lω(B).

• Size-optimization problem. Given an UPA A in a specific normalized
form, it consists of building an equivalent UPA B having the smallest
number of states among all equivalent UPA in that normalized form.

As UPA can be viewed both as a restricted class of Büchi automata and as
an extension of NFA, we will compare the structure and the complexity of
the proposed algorithms with those of both of them.

5.1 The emptiness and membership problems

In the case of a Büchi automaton, the emptiness problem is solved by (i)
searching for a path departing from an initial state and reaching a final state
and (ii) searching for a loop that contains such a final state. Since every
final state of an UPA in normal form belongs to a final loop, the emptiness
problem for UPA in normal form reduces to the problem of searching for a
path from an initial state to a final state, as it happens with NFA. Thus, the
emptiness problem can be solved in linear time O(|A|).

As for the membership problem, there is a straightforward algorithm,
which exploits basic closure properties, that decides whether a given UPA
A accepts a given ultimately periodic word w = uvω in time O(|A|(|u| +
|v|)). The problem of checking whether w = uvω belongs to the ω-language
recognized by a given UPA A is indeed equivalent to the problem of testing
the (non-)emptiness for the ω-language Lω(A) ∩ Lω(B), where B is an
UPA that recognizes the singleton {uvω}. A (slightly) more efficient solution,
which takes time O(|A||u|+ |v|), takes advantage of prefix automata. Given an
UPA A and an ultimately periodic word w = uvω, one can decide whether
w ∈ Lω(A) by performing the following steps:
1. compute the prefix automaton Apre of A;
2. replace in Apre every transition of the form (s,b, f), with b = (s,C) ∈
ΣA\Σ, by a transition of the form (s, x, f), where x is either the symbol >
or the symbol ⊥, depending on whether C encodes the repeating pattern
v starting from s or not;
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3. decide whether the resulting NFA accepts the word u>.

Note that the above steps, but the last one, can be performed in linear time
with respect to the size of A, u, and v, while the last step can be performed
in time linear in |A||u|.

5.2 The equivalence and inclusion problems

It is well known that the equivalence and inclusion problems, for any class
of automata which is closed under intersection, are inter-reducible. As an
example, given two Büchi automata A and B, we have Lω(A) = Lω(B) iff
Lω(A) ⊆ Lω(B) ∧ Lω(B) ⊆ Lω(A) and, similarly, Lω(A) ⊆ Lω(B)
iff Lω(A) = Lω(A) ∩Lω(B). Moreover, if the class of automata is also
closed under complementation, then both problems can be reduced to the
emptiness problem. As an example, given two Büchi automata A and B, we
have Lω(A) ⊆ Lω(B) iff Lω(A) ∩ Lω(C) = ∅, where C is the Büchi
automaton recognizing the complement language of Lω(B).

In [35] an implicit construction of a complement Büchi automaton has
been given, which allows one to solve the equivalence problem for Büchi
automata in polynomial space. Such a construction is based on the ability to
encode each state and checking each transition of the complement automaton
by using only a polynomial amount of space. Since, in the worst case, the
number of states of the complement automaton is Ω(2n logn), where n is the
number of states of the input automaton (see [19, 24] for lower-bound results
and [26, 32, 33] for constructions that match these bounds), it turns out that
that any deterministic or non-deterministic algorithm based on an explicit
or implicit construction of a complement automaton must use Ω(n logn)
space.

As for NFA, both the equivalence and inclusion problems are proved to
be PSPACE-complete [15]. Standard algorithms solving these problems are
based on either explicit or implicit constructions of equivalent deterministic
finite state automata and they use either simple exponential time Θ(2n) or
linear space Θ(n), where n is the number of states of the input NFA. As
an example, the inclusion problem for two NFA A and B can be solved by
guessing a finite word u which is a witness for the non-inclusion of L (A)
in L (B), namely, such that u ∈ L (A) and u ∈ L (C), where C is the DFA
recognizing the complement of L (B). Verifying that u ∈ L (C) can be done
directly on the NFA B by first computing the set of states of B that are
reachable from an initial state by reading u and then verifying that such a
set does not contain any final state. The described algorithm thus requires
linear space with respect to the size of the input NFA A and B.

Since UPA-recognizable languages have equivalent representations in terms
of prefix automata, by exploiting existing algorithms for NFA we can devise
suitable algorithms for the equivalence and inclusion problems of UPA of
the same complexity. As a preliminary result, we provide a polynomial lower
bound to the space complexity of the equivalence and inclusion problems for
UPA.
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Proposition 12 The equivalence problem and inclusion problem for UPA
are PSPACE-hard under LOGSPACE reductions.

Proof We provide a LOGSPACE reduction from the equivalence problem for
NFA, which is known to be PSPACE-hard under LOGSPACE reductions [15],
to the equivalence problem for UPA. Let A and B be two NFA recognizing
the languages L (A) and L (B), respectively. We extend the input alphabet
with a new symbol # and we transform the NFA A (resp., B) into an UPA A ′

(resp., B ′) that recognizes the ω-language L (A){#}
ω (resp., L (A){#}

ω) as
follows:
i) we add a new state f that becomes the unique final state of A ′ (resp.,

B ′),
ii) we add a new transition of the form (f, #, f),
iii) for each final state s in A (resp., B), we add a new transition (s, #, f).
Clearly, we have Lω(A ′) = Lω(B ′) iff L (A) = L (B). This allows us to
conclude that the equivalence problem and the inclusion problem for UPA
are PSPACE-hard under LOGSPACE reductions. 2

Let us now provide optimal algorithms that solve the equivalence and
inclusion problems for UPA.

The first solution to the equivalence and inclusion problems for UPA
stems from the fact that the canonical form of an UPA is unique, up to
isomorphisms, among all equivalent UPA. Thus, the problem of deciding
whether two given UPA A and B recognize the same ω-language can be
reduced to the problem of testing whether the canonical forms A ′ and B ′

of A and B, respectively, are isomorphic. By Theorem 4, we know that the
canonical form of an UPA is computable in exponential time. Moreover, since
canonical forms of UPA are, basically, deterministic labeled graphs (with the
only exception of the transitions entering the final loops), one can easily
decide by a linear time procedure whether the canonical UPA A ′ and B ′

are isomorphic. This allows us to conclude that the equivalence problem for
two generic UPA A and B can be decided by a deterministic procedure that
requires exponential time in the size of the input UPA A and B.

As for the inclusion problem, one can exploit the fact that, given two
UPA A ′ and B ′ in canonical form, O(|A ′|+ |B ′|) time suffices to compute an
UPA C ′ in canonical form that recognizes the intersection language Lω(A ′)∩
Lω(B ′). This yields a straightforward procedure that, given two UPA A and
B, decides in exponential time whether Lω(A) ⊆ Lω(B): such a procedure
first computes the canonical forms A ′ and B ′ of A and B, respectively, then
it computes the UPA C ′ in canonical form recognizing Lω(A ′) ∩Lω(B ′),
and finally it decides whether Lω(A ′) = Lω(C ′).

It is worth pointing out that the proposed deterministic solutions to the
equivalence and inclusion problems for UPA outperform classical solutions
for Büchi automata, which are based on the construction of complement
languages, and their time complexity is comparable to the time complexity
of analogous algorithms working on NFA.

We now describe alternative non-deterministic algorithms that solve the
equivalence problem and the inclusion problem for UPA using at most a
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linear amount of space. These are modified versions of standard algorithms
working on NFA, which, basically, exploit an implicit subset construction to
decide the (non-)inclusion problem for two given regular languages. Similar
constructions have been also proposed in [20, 25].

Let A = (Σ,S,∆, I, F) and B = (Σ,S ′,∆ ′, I ′, F ′) be two generic UPA.
By Theorem 3, one can apply the standard non-inclusion algorithm for NFA
directly to the prefix automata corresponding to prefix-friendly UPA A ′ and
B ′ obtained from A and B, respectively. However, in such a case, the worst-
case space complexity of the resulting algorithm is quadratic with respect to
the size of the input UPA A and B (recall that prefix-friendly UPA A ′ and
B ′ may have quadratic size with respect to the original UPA A and B). Here,
we describe a modified version of the non-inclusion algorithm that directly
works on UPA and that requires linear space with respect to their size.

Without loss of generality, we can assume that the two input UPA A and
B are in normal form (by Proposition 9, this does not imply any blowup
of the size). The proposed algorithm exploits non-determinism to guess an
ultimately periodic word w that belongs to Lω(A) and then verifies that w
does not belong to Lω(B), thus certifying that Lω(A) 6⊆ Lω(B). Since
any run of A that accepts an ultimately periodic wordw is eventually trapped
inside a simple final loop, we can distinguish two phases of the algorithm,
the first one dealing with a prefix of the run of A that reaches the final loop,
the second one dealing with the (unique) suffix encoded by the final loop4.

During the first phase, a finite prefix s0s1...sn of a run of A and a word
a1...an recognized by it are guessed. At the same time, the sets S ′0,S ′1, ...,S ′n
of states of B which are visited while reading the word a1...an are computed.
Configurations are thus described by pairs of the form (si,S ′i), with si ∈ S
and S ′i ⊆ S ′. The algorithm starts with an initial configuration of the form
(s0,S ′0), where s0 is an initial state of A and S ′0 is the set of initial states
of B. At each step, the algorithm chooses a transition of A of the form
(si,ai+1, si+1), with ai+1 being a symbol from Σ and si+1 being a state of
A, and it then computes the next configuration (si+1,S ′i+1), where S ′i+1 is
defined as the set of all states r ′ of B such that there exists s ′ ∈ S ′i, with
(s ′,ai+1, r ′) being a valid transition of B. If, at some step n, sn turns out to
be a final state, then we know that A recognizes an ultimately periodic word
with prefix a1...an. At this point, the algorithm switches to the second phase.
Note that, even though the first phase can be carried on for arbitrarily many
steps (this is the case, for instance, when a non-final loop of A is reached), we
can limit the number of iterations during this phase to |S|2|S′|: indeed, if n >
|S|2|S′| steps were performed during the first phase, then, by the Pigeonhole
Principle, there would exist two indices n ′,n ′′, with n ′ < n ′′ 6 |S|2|S′|, such
that (sn′ ,S ′n′) = (sn′′ ,S ′n′′) and hence the word a1...an′an′′+1...an would
be the prefix of an alternative witness for the non-inclusion.

During the second phase, the computation proceeds in a deterministic way
on the basis of the (unique) infinite periodic word b1b2... which is recognized
by A starting from the last visited (final) state sn. Configurations are again

4 It is worth remarking that such a technique cannot be extended to generic
Büchi automata, since their runs may visit distinct final loops infinitely often.
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described by pairs of the form (qi,Q ′i), with qi ∈ S and Q ′i ⊆ S ′, and they
obey to the following constraints:

• the first configuration (q0,Q ′0) coincides with the last configuration (sn,S ′n)
computed during the first phase;

• (bi+1,qi+1) is the unique pair such that (qi,bi+1,qi+1) is a valid tran-
sition of A;

• Q ′i+1 is the set of all states r ′ of B for which there exists q ′ ∈ Q ′i such
that (q ′,bi+1, r ′) is a valid transition of B.

By a simple application of the Pigeonhole Principle, we have that there
exist two indices m,m ′, with m < m ′ 6 |S|2|S′|, such that (qm,Q ′m) =
(qm′ ,Q ′m′). Hence, if Q ′m contains no final state, then we know that the
ultimately periodic word

(a1...an)(b1...bm)(bm+1...bm′)ω

is recognized by A, but not by B, thus certifying that Lω(A) 6⊆ Lω(B).
Otherwise, if Q ′m contains at least one final state, then the computation is
discarded. It is worth pointing out that we do not need to exhibit the candi-
date ultimately periodic word (a1...an)(b1...bm)(bm+1...bm′)ω in Lω(A)\
Lω(B), and thus we do not need to keep track of its symbols during the
computation.

The described non-deterministic algorithm solves the non-inclusion (and
hence the non-equivalence) problem by using linear space in the size of the
input UPA (precisely, it requires O(log |S|+|S ′|) space to store a configuration
of the form (si,S ′i), with si ∈ S and S ′i ⊆ S ′, and the value of a counter i
ranging over {0, ..., |S|2|S′|}). The space complexity of the proposed algorithm
is comparable with that of classical non-deterministic algorithms working on
NFA and it is strictly lower than that of classical non-deterministic algorithms
working on Büchi automata.

Finally, we recall that, by exploiting Savitch’s Theorem [30], the above
non-deterministic procedure can be turned into a deterministic one that
solves the inclusion (and hence the equivalence) problem for UPA by using
at most quadratic space.

5.3 The size-optimization problem

Let us consider now the minimization problem for UPA. We first prove that,
similarly to the case of NFA (see [16, 17, 23]), the size-optimization problem
for UPA is PSPACE-complete and it may yield different (non-isomorphic)
solutions. Then, we show that standard minimization algorithms for NFA
can be directly exploited to minimize the size of any UPA in normal form.
These algorithms can be applied to generic UPA as well; however, in such a
case the resulting UPA are, in general, approximations of size-optimal ones.

To start with, we provide a sufficient condition for UPA to be size-optimal
among all equivalent UPA in normal form.
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Proposition 13 Let A be an UPA in prefix-friendly form and let Apre be its
prefix automaton. If Apre has the minimum number of states among all equiv-
alent NFA, then A has the minimum number of states among all equivalent
UPA in normal form.

Proof For any given automaton (UPA or NFA) A, let us denote by n(A) the
number of its states. Assume A to be a prefix-friendly UPA, whose prefix
automaton Apre has the minimum number of states among all equivalent
NFA. By definition of prefix automaton, we have that n(Apre) = n(A) + 1.
Let us now consider a generic UPA B in normal form equivalent to A. By
Proposition 10, there is a prefix-friendly UPA B ′ equivalent to B such that
n(B ′) 6 n(B). Moreover, since B ′ is prefix-friendly, by Theorem 3 we have
that the prefix automaton B ′pre is equivalent to Apre . From the minimality of
Apre , we obtain n(Apre) 6 n(B ′pre). Moreover, by construction, n(B ′pre) =

n(B ′) + 1. Summing up, we have

n(A) = n(Apre) − 1 6 n(B ′pre) − 1 = n(B ′) 6 n(B)

which proves that A has the minimum number of states among all equivalent
UPA in normal form. 2

By exploiting Proposition 13, we can devise a PSPACE solution to the
size-optimization problem for UPA in normal form. Such a solution exploits
an auxiliary procedure that minimizes the number of states of prefix au-
tomata (see [17, 23] for implementation details). Since the size-optimization
problem for NFA is known to be PSPACE-complete [16, 17, 23] and since
(by an argument similar to that of Proposition 12) it is inter-reducible with
the size-optimization problem for UPA in normal form, we can conclude that
the latter problem is PSPACE-complete as well.

If we do not restrict to the class of UPA in normal form, then the number
of states of UPA can be further reduced. Below, we show that some final loops
of UPA may be safely removed, under the proviso that another ‘subsuming’
non-final loop takes their role.

Definition 8 Let A = (Σ,S,∆, I, F) be an UPA, C a final loop, and C ′ a
simple non-final loop. We say that C is subsumed by C ′ if C has no exiting
transitions and there is a surjective function f : C ′ → C that satisfies the
following two conditions:
• for every pair of states r, s in C ′, (r,a, s) ∈ ∆ iff (f(r),a, f(s)) ∈ ∆

(intuitively, C and C ′ are bisimilar),
• for every state r neither in C nor in C ′ and every state s in C, (r,a, s) ∈
∆ iff there is a state s ′ in C ′ such that s = f(s ′) and (r,a, s ′) ∈ ∆
(intuitively, the loop C ′ augmented with its entering transitions simulates
the loop C augmented with its entering transitions).

If C is a final loop of A which is subsumed by a simple non-final loop C ′, then
we can obtain an equivalent UPA B with fewer states by (i) removing the
loop C and (ii) letting C ′ be a final loop in B. As an example, the right-hand
side UPA in Figure 5 is obtained from the left-hand side one by removing
the final loop on state s4 and by letting the subsuming loop on states s1 and
s2 be final.
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Fig. 5 An example of subsumed final loop.

Proposition 14 Given an UPA A = (Σ,S,∆, I, F), a final loop C, and
a simple non-final loop C ′ that subsumes C, the automaton B = (Σ,S \
C,∆, I, (F ∪ C ′) \ C) is an UPA equivalent to A.

Proof Since every final state s of B is contained either in C ′ (and thus the
strongly connected component of s in B is a simple loop) or in F \ C (and
thus the strongly connected component of s in B is a single transient state or
a simple final loop), it immediately follows that B is an UPA. To complete
the proof, it suffices to show that B is equivalent to A. Let f be the surjective
function from C ′ to C of Definition 8. We first prove that Lω(A) ⊆ Lω(B).
Let w an ultimately periodic word in Lω(A) and let ρ be a successful run
of A on w. By Definition 8 the subsumed loop C has no exiting transition
and thus either ρ does not contain any state in C or, all, but finitely many,
states in ρ belong to C. In the former case, it immediately follows that ρ
is also a successful run of Lω(B) on w. In the latter case, we can obtain
a successful run ρ ′ of B on w by simply replacing each state s of C with a
suitable state s ′ such that f(s ′) = s (given the properties of the function f,
ρ ′ respects the transitions of B on w). This shows that w is accepted by B.
As for the converse inclusion, let w be an ultimately periodic word accepted
by B and let ρ ′ be a successful run of B on w. By definition of UPA, the set
of all states that occur infinitely often in ρ ′ is either disjoint from C ′ or it
coincides with the set of states of C ′. In the former case, ρ ′ is a successful
run of A on w as well and thus w is accepted by A; in the latter case, we can
obtain a successful run ρ of A on w by simply replacing each state s that
occur infinitely often in ρ ′ with the state f(s). 2

On the basis of Proposition 14, we can devise an algorithm that uses polyno-
mial space to remove all subsumed final loops from a given UPA A in normal
form. Clearly, the removal of all subsumed final loops of A (if any) results in
an equivalent UPA B with fewer states. Moreover, since all final loops of A
are disjoint, the size of the resulting UPA B does not depend on the removal
order of the subsumed final loops.

It is worth pointing out that, in general, the UPA B resulting from the
removal of all subsumed final loops of A is not guaranteed to be size-optimal
among all equivalent UPA, even in the case in which A is a size-optimal UPA
in normal form. As an example, consider the two equivalent UPA in normal
form depicted in Figure 6. The left-hand side automaton has no subsumed
final loops, while the right-hand side automaton has a final loop (the one
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Fig. 6 Two equivalent UPA in normal form.

on state s5) which is subsumed by a non-final loop (the one on state s2).
The optimization algorithm has no effect on the left-hand side UPA, while it
reduces the size of the equivalent right-end side UPA. In general, to compute
an UPA with the minimum number of states among all equivalent UPA one
must resort to costly algorithms based on trace equivalence. These algorithms
can be obtained as generalizations of standard minimization algorithms for
NFA [17, 23].

6 Applications to time granularity

The algorithms for solving the emptiness, membership, equivalence, inclu-
sion, and size-optimization problems, which have been described in the pre-
vious section, can be directly exploited to reason on possibly infinite sets of
time granularities, e.g., the algorithm that solves the equivalence problem
for UPA can be used to check whether or not two given automaton-based
representations define the same set of granularities. In the following, we show
that UPA turn out to be useful also in solving another basic problem for time
granularity, namely, the comparison of pairs of sets of time granularities with
respect to various standard relations, e.g., partition, group, sub-granularity,
aligned refinement.

In its most common formulation, the granularity comparison problem is
viewed as the problem of deciding whether a designated relation ∼ holds
between two granularities G ∈ G and H ∈ H, where G and H are two
given sets of granularities. According to such a definition, the granularity
comparison problem is actually a family of problems, whose different concrete
instances are obtained by specifying the relation that must hold between the
pairs of granularities that belong to the two sets G and H.

Within the framework of automaton-based representations, a granularity
comparison problem is reducible to the problem of deciding, given two UPA
A and B representing two sets of ultimately periodic granularities, whether
there exist some words wG ∈ Lω(A) and wH ∈ Lω(B) that satisfy a
certain relation ∼, which basically capture the designated relation between
time granularities.

To start with, we provide string-based characterizations of standard re-
lations between time granularities, that is, group into, refine, partition, and
aligned refinement. Hereafter, given a wordw over the alphabet Σ = {�,�,J}
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and a symbol a ∈ Σ, we denote by |w|a the number of occurrences (possibly∞) of a in w. Note that, given an infinite word w that represents a time
granularity G and given two natural numbers t, x ∈ N, x is the index of the
(unique) granule of G that contains t iff w[t+1] ∈ {�,J} and |w[1, t]|J = x.

Proposition 15 Let u and v be two infinite words over the alphabet {�,�,J}
that represent, respectively, two granularities G and H. We have that
• G groups into H iff for every t ∈ N,

i) v(t+ 1) = � implies u(t+ 1) ∈ {�,J},
ii) v(t+ 1) = J implies u(t+ 1) = J,
iii) v(t + 1) = � implies either u(t + 1) = � or v(t ′ + 1) = � for all

t ′ ∈ N such that |u[1, t]|J = |u[1, t ′]|J;
• G refines H iff for every t ∈ N,

i) u(t+ 1) = � implies v(t+ 1) = �,
ii) u(t+ 1) = J implies v(t+ 1) ∈ {�,J};

• G partitions H iff for every t ∈ N,
i) u(t+ 1) = � if and only if v(t+ 1) = �,
ii) u(t+ 1) = � implies v(t+ 1) = �;

• G is an aligned refinement of H iff for every t ∈ N,
i) u(t+ 1) = � implies v(t+ 1) = �,
ii) u(t+ 1) = J implies v(t+ 1) ∈ {�,J};
iii) u(t+ 1) = J implies |u[1, t]|J = |v[1, t]|J.

Proof We only prove the characterization for the alignment refinement re-
lation. Suppose that G is an aligned refinement of H. By definition, every
time point t ∈ N which is covered by G is covered by H as well. Thus, for
every t ∈ N, u(t+ 1) ∈ {�,J} implies v(t+ 1) ∈ {�,J}. Moreover, it cannot
happen that u(t+ 1) = � and v(t+ 1) = J because, otherwise, the granule
of G that contains the time point t would not be included in a granule of
H. Finally, for every t ∈ N, if u(t + 1) = J, then t is the last time point
of the granule G(x), where x = |u[1, t]|J. Since G(x) ⊆ H(x), we have that
|v[1, t]|J = x. The converse implication follows by a symmetric argument. 2

Let ∼ be one of the standard relations between time granularities. By
exploiting Proposition 15, it is immediate to see that theω-language L∼ of all
pairs of infinite words (including non-periodical ones) that represent pairs of
time granularities G,H such that G ∼ H is Büchi-recognizable. In particular,
one can build a Büchi automaton C∼ over the alphabet {�,�,J}× {�,�,J}
that recognizes the language L∼. As an example, Figure 7 depicts the Büchi
automaton C∼, where ∼ is the aligned refinement relation.

Moreover, given two UPA A and B representing some sets G and H of
time granularities, one can build a suitable product automaton (an UPA) that
recognizes the ω-language L = Lω(A)×Lω(B), which basically represents
all pairs (G,H) of time granularities, with G ∈ G and H ∈ H. Thus, one
can solve the comparison problem for the designated relation ∼ by simply
testing the emptiness of the intersection language L ∩ L∼, which is known
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Fig. 7 The automaton for the aligned refinement relation.

to be UPA-recognizable. Note that, since the Büchi automaton C∼ is fixed
with the designated relation ∼, the complexity of the resulting algorithm is
O(|A||B|).

We conclude this section by showing how a concrete problem, taken from
the medical domain of heart transplant patients, can be addressed and effi-
ciently solved by exploiting the notion of time granularity and the properties
of UPA-recognizable ω-languages.

Posttransplantation guidelines require outpatients to take drugs and to
submit to periodical visits for life. These requirements are usually collected in
formal protocols with schedules specifying the therapies and the frequency of
the check-ups. We report an excerpt of the guidelines for a heart transplant
patient in [22]. Depending on the physical conditions of the patient, the
guidelines can require, together with other treatments, an estimation of the
glomerular filtration rate (GFR) with one of the following schedules:
• 3 months and 12 months posttransplantation and every year thereafter;
• 3 months and 12 months posttransplantation and every 2 years thereafter.
These protocols involve the so-called unanchored granularities, to manage
the various admissible starting points for the scheduled therapies (and/or
check-ups), as well as sets of granularities with different repeating patterns,
to capture the set of distinct periodicities of the scheduled therapies. In par-
ticular, since different protocols can be specified for the same class of patients
by different people/institutions, it is a crucial problem to decide whether two
protocols define the same set of therapies/granularities (equivalence prob-
lem). Solving this problem makes it possible to choose the most compact, or
the most suitable, representation for a given protocol.

Another meaningful reasoning task is that of checking whether a given
therapy/granularity assigned to a patient satisfies the prescribed protocol,
that is, whether it belongs to the set of therapies/granularities of the proto-
col (consistency-checking problem). As an example, consider the (sub)set of
therapies/check-ups of the above protocol for heart transplant patients and
the instance of the temporal relation Visits(patientId, date, treatment),
represented in Table 1. Given a representation of the single granularity G for
the specific therapy (up to a certain date) of a certain patient and given a
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patientId date (MM/DD/YYYY) treatment
1001 02/10/2003 transplant
1001 04/26/2003 GFR
1002 06/07/2003 GFR
1001 06/08/2003 biopsy
1001 02/10/2004 GFR
1001 01/11/2005 GFR
1001 01/29/2006 GFR

Table 1 A hypothetical schedule for therapies/check-ups.

�115 J �288 J �335 J �382 J

�

Fig. 8 An UPA representing GFR measurements for a patient.

�

�60 �29 J �245 �29

J

J

�335 �29

J

�700 �29

J

Fig. 9 An UPA-based specification of the protocol.

representation of the set of (periodic) time granularities for the prescribed
therapies/check-ups, the consistency-checking problem can be decided by
testing whether granularity G properly relates to some granularity in H.
The consistency-checking problem can thus be viewed as a particular case of
granularity comparison problem. Below, we show how such a problem can be
effectively solved by means of UPA.

For the sake of simplicity, we consider months of 30 days and years of 365
days (relaxing such a simplification is tedious, but trivial). By properly select-
ing records in Table 1, we can build the granularity G of GFR measurements
for the patient identified by patientId 1001. We represent such a granularity
as a single ultimately periodic word w (starting from 01/01/2003), in which
the occurrences of J denote the days of the visits. The UPA A that accepts
w is depicted in Figure 8, where we use the shorthand ◦ a

n

−→◦ to denote a
sequence of n+ 1 states and n a-labeled transitions.

The set H of periodic time granularities that encode the set of valid
therapies of the protocol is represented by the UPA B depicted in Figure 9.

Checking the consistency of GFR measurements for patient 1001 with
respect to the prescribed protocol amounts to check whether granularity G
is an aligned refinement of some granularity in H. We can solve the latter
problem by first building the UPA D = (A×B)∩C∼, where C∼ is the Büchi
automaton depicted in Figure 7, and then checking whether the recognized
ω-language Lω(D) is non-empty. In our case, we easily see that D recognizes
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Since the resulting language is non-empty, we can conclude that G is an
aligned refinement of some granularity in H and thus the considered therapy
satisfies the prescribed protocol.

7 Conclusions

In this paper, we developed a theory of regular ω-languages that consist of
ultimately periodic words only and we provided it with an automaton-based
characterization. Furthermore, we showed how well-known results coming
from automata theory can be exploited to solve a number of basic problems
about regular ω-languages of ultimately periodic words. In particular, we
provided effective solutions to the problems of emptiness, membership, equiv-
alence, inclusion, and size-optimization. We also showed that the proposed
framework allows one to represent and to reason about sets of granularities
that have possibly infinitely many different prefixes and a finite number of
non-equivalent repeating patterns.

As it has been shown in Section 4, UPA-recognizable languages, which are
a proper subclass of Büchi-recognizable ones, are not closed under comple-
mentation. In fact, for every UPA-recognizable language L, the complement
L̄ of L is not UPA-recognizable. The relationships among UPA-recognizable
languages, their complements, and Büchi-recognizable languages can be sum-
marized as follows. Let us call co-UPA-recognizable language the comple-
ment L̄, with respect to the set UΣ of all ultimately periodic words, of any
UPA-recognizable language L. Any co-UPA-recognizable language features
all, but finitely many, non-equivalent repeating patterns and, as pointed out
in the proof of Proposition 5, it is not Büchi-recognizable. Moreover, for
every pair of UPA-recognizable languages L1 and L2, the language L1 ∩ L̄2

(= L1∩(UΣ \L2) = L1∩(Σω \L2)) is UPA-recognizable as well. Analogously,
the union of an UPA-recognizable language with a co-UPA-recognizable lan-
guage is a co-UPA-recognizable language. This basically means that the class
of languages that contains all UPA-recognizable languages and all their com-
plements is the smallest class that includes all regular ω-languages of ulti-
mately periodic words and is closed under finite unions, finite intersections,
and complementation with respect to UΣ. Moreover, it is straightforward
to generalize the proposed solutions to the emptiness, membership, equiva-
lence, and inclusion problems for UPA to solutions of analogous problems for
co-UPA.

It is worth pointing out that there exist interesting connections between
UPA-recognizable languages and other subclasses of regular ω-languages.
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In particular, the class of UPA can be viewed as a proper subclass of non-
deterministic co-Büchi (or safety) automata. Moreover, non-deterministic co-
Büchi automata are known to be equivalent to their deterministic versions
[25]. It thus follows that the languages recognized by UPA can be also rec-
ognized by a proper subclass of deterministic co-Büchi automata.

A natural development of the present work is the definition of a high-
level logical language, e.g., a variant of propositional linear temporal logic
[14], that allows one to represent all (co-)UPA-recognizable languages by
means of suitable formulas. Besides its theoretical relevance, pairing such a
logical framework with the proposed automaton-based one would allow one
to use the former as a high-level interface for the specification of granularities
and the latter as an internal formalism for efficiently reasoning about them.
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